-
Je něco špatně v tomto záznamu ?
Communication between N terminus and loop2 tunes Orai activation
M. Fahrner, SK. Pandey, M. Muik, L. Traxler, C. Butorac, M. Stadlbauer, V. Zayats, A. Krizova, P. Plenk, I. Frischauf, R. Schindl, HJ. Gruber, P. Hinterdorfer, R. Ettrich, C. Romanin, I. Derler,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 2008 do Před 1 rokem
Freely Accessible Science Journals
od 1905 do Před 1 rokem
PubMed Central
od 2005
Europe PubMed Central
od 2005 do Před 1 rokem
Open Access Digital Library
od 1905-10-01
Open Access Digital Library
od 1905-10-01
ROAD: Directory of Open Access Scholarly Resources
od 1905
PubMed
29237733
DOI
10.1074/jbc.m117.812693
Knihovny.cz E-zdroje
- MeSH
- HEK293 buňky MeSH
- lidé MeSH
- nádorové proteiny chemie genetika metabolismus MeSH
- protein ORAI1 chemie genetika metabolismus MeSH
- protein STIM1 chemie genetika metabolismus MeSH
- proteinové domény MeSH
- sekundární struktura proteinů MeSH
- vápníkové kanály chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001038
- 003
- CZ-PrNML
- 005
- 20190121115703.0
- 007
- ta
- 008
- 190107s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1074/jbc.M117.812693 $2 doi
- 035 __
- $a (PubMed)29237733
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Fahrner, Marc $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 245 10
- $a Communication between N terminus and loop2 tunes Orai activation / $c M. Fahrner, SK. Pandey, M. Muik, L. Traxler, C. Butorac, M. Stadlbauer, V. Zayats, A. Krizova, P. Plenk, I. Frischauf, R. Schindl, HJ. Gruber, P. Hinterdorfer, R. Ettrich, C. Romanin, I. Derler,
- 520 9_
- $a Ca2+ release-activated Ca2+ (CRAC) channels constitute the major Ca2+ entry pathway into the cell. They are fully reconstituted via intermembrane coupling of the Ca2+-selective Orai channel and the Ca2+-sensing protein STIM1. In addition to the Orai C terminus, the main coupling site for STIM1, the Orai N terminus is indispensable for Orai channel gating. Although the extended transmembrane Orai N-terminal region (Orai1 amino acids 73-91; Orai3 amino acids 48-65) is fully conserved in the Orai1 and Orai3 isoforms, Orai3 tolerates larger N-terminal truncations than Orai1 in retaining store-operated activation. In an attempt to uncover the reason for these isoform-specific structural requirements, we analyzed a series of Orai mutants and chimeras. We discovered that it was not the N termini, but the loop2 regions connecting TM2 and TM3 of Orai1 and Orai3 that featured distinct properties, which explained the different, isoform-specific behavior of Orai N-truncation mutants. Atomic force microscopy studies and MD simulations suggested that the remaining N-terminal portion in the non-functional Orai1 N-truncation mutants formed new, inhibitory interactions with the Orai1-loop2 regions, but not with Orai3-loop2. Such a loop2 swap restored activation of the N-truncation Orai1 mutants. To mimic interactions between the N terminus and loop2 in full-length Orai1 channels, we induced close proximity of the N terminus and loop2 via cysteine cross-linking, which actually caused significant inhibition of STIM1-mediated Orai currents. In aggregate, maintenance of Orai activation required not only the conserved N-terminal region but also permissive communication of the Orai N terminus and loop2 in an isoform-specific manner.
- 650 _2
- $a vápníkové kanály $x chemie $x genetika $x metabolismus $7 D015220
- 650 _2
- $a HEK293 buňky $7 D057809
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nádorové proteiny $x chemie $x genetika $x metabolismus $7 D009363
- 650 _2
- $a protein ORAI1 $x chemie $x genetika $x metabolismus $7 D000071740
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a protein STIM1 $x chemie $x genetika $x metabolismus $7 D000071737
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pandey, Saurabh K $u the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic.
- 700 1_
- $a Muik, Martin $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Traxler, Lukas $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Butorac, Carmen $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Stadlbauer, Michael $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Zayats, Vasilina $u the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic.
- 700 1_
- $a Krizova, Adéla $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Plenk, Peter $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Frischauf, Irene $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Schindl, Rainer $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Gruber, Hermann J $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Hinterdorfer, Peter $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and.
- 700 1_
- $a Ettrich, Rüdiger $u the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 373 33 Nove Hrady, Czech Republic.
- 700 1_
- $a Romanin, Christoph $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and christoph.romanin@jku.at.
- 700 1_
- $a Derler, Isabella $u From the Institute of Biophysics, Johannes Kepler University of Linz, Gruberstrasse 40, 4020 Linz, Austria, and Isabella.derler@jku.at.
- 773 0_
- $w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 293, č. 4 (2018), s. 1271-1285
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29237733 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190121115921 $b ABA008
- 999 __
- $a ok $b bmc $g 1363979 $s 1039161
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 293 $c 4 $d 1271-1285 $e 20171213 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
- LZP __
- $a Pubmed-20190107