• Je něco špatně v tomto záznamu ?

Exploring the enantiorecognition mechanism of Cinchona alkaloid-based zwitterionic chiral stationary phases and the basic trans-paroxetine enantiomers

R. Sardella, A. Macchiarulo, F. Urbinati, F. Ianni, A. Carotti, M. Kohout, W. Lindner, A. Péter, I. Ilisz,

. 2018 ; 41 (6) : 1199-1207. [pub] 20171227

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19001083

The enantiomers of trans-paroxetine (the selectand) were separated on four chiral stationary phases incorporating either quinine [ZWIX(+), ZWIX(+A)] or quinidine [ZWIX(-), ZWIX(-A)] and (R,R)-aminocyclohexanesulfonic acid [in ZWIX(-), and ZWIX(+A)] or (S,S)-aminocyclohexanesulfonic acid [in ZWIX(+), and ZWIX(-A)] chiral selectors. The zwitterion nature of the phases is due to the presence of either (R,R)- or (S,S)-aminocyclohexanesulfonic acid in the selector structure bearing the quinuclidine moiety. ZWIX(+) and ZWIX(-) phases are available on the market with the commercial names CHIRALPAK ZWIX(+) and CHIRALPAK ZWIX(-), respectively. With the aim of rationalizing the enantiomer elution order with the above chiral stationary phases, a molecular dynamic protocol was applied and two energetic parameters were initially measured: selectand conformational energy and selectand interaction energy. In the search for other descriptors allowing a better fitting with the experimental evidences, in the present work we consider an energetic parameter, defined as the selector conformational energy, which resulted to be relevant in the explanation of the experimental elution order in most of the cases. Very importantly, the computational data produced by the present study strongly support the outstanding role of the conformational energy of the chiral selector as it interacts with the analytes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001083
003      
CZ-PrNML
005      
20190108130628.0
007      
ta
008      
190107s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jssc.201701068 $2 doi
035    __
$a (PubMed)29160617
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Sardella, Roccaldo $u Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
245    10
$a Exploring the enantiorecognition mechanism of Cinchona alkaloid-based zwitterionic chiral stationary phases and the basic trans-paroxetine enantiomers / $c R. Sardella, A. Macchiarulo, F. Urbinati, F. Ianni, A. Carotti, M. Kohout, W. Lindner, A. Péter, I. Ilisz,
520    9_
$a The enantiomers of trans-paroxetine (the selectand) were separated on four chiral stationary phases incorporating either quinine [ZWIX(+), ZWIX(+A)] or quinidine [ZWIX(-), ZWIX(-A)] and (R,R)-aminocyclohexanesulfonic acid [in ZWIX(-), and ZWIX(+A)] or (S,S)-aminocyclohexanesulfonic acid [in ZWIX(+), and ZWIX(-A)] chiral selectors. The zwitterion nature of the phases is due to the presence of either (R,R)- or (S,S)-aminocyclohexanesulfonic acid in the selector structure bearing the quinuclidine moiety. ZWIX(+) and ZWIX(-) phases are available on the market with the commercial names CHIRALPAK ZWIX(+) and CHIRALPAK ZWIX(-), respectively. With the aim of rationalizing the enantiomer elution order with the above chiral stationary phases, a molecular dynamic protocol was applied and two energetic parameters were initially measured: selectand conformational energy and selectand interaction energy. In the search for other descriptors allowing a better fitting with the experimental evidences, in the present work we consider an energetic parameter, defined as the selector conformational energy, which resulted to be relevant in the explanation of the experimental elution order in most of the cases. Very importantly, the computational data produced by the present study strongly support the outstanding role of the conformational energy of the chiral selector as it interacts with the analytes.
650    _2
$a chininové alkaloidy $x chemie $7 D002930
650    _2
$a molekulární modely $7 D008958
650    _2
$a molekulární konformace $7 D008968
650    _2
$a paroxetin $x chemie $x izolace a purifikace $7 D017374
650    _2
$a stereoizomerie $7 D013237
655    _2
$a časopisecké články $7 D016428
700    1_
$a Macchiarulo, Antonio $u Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
700    1_
$a Urbinati, Fabrizio $u Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
700    1_
$a Ianni, Federica $u Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
700    1_
$a Carotti, Andrea $u Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
700    1_
$a Kohout, Michal $u Department of Organic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic.
700    1_
$a Lindner, Wolfgang $u Department of Analytical Chemistry, University of Vienna, Vienna, Austria.
700    1_
$a Péter, Antal $u Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary.
700    1_
$a Ilisz, István $u Department of Inorganic and Analytical Chemistry, University of Szeged, Szeged, Hungary.
773    0_
$w MED00006463 $t Journal of separation science $x 1615-9314 $g Roč. 41, č. 6 (2018), s. 1199-1207
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29160617 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190108130829 $b ABA008
999    __
$a ok $b bmc $g 1365016 $s 1039206
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 41 $c 6 $d 1199-1207 $e 20171227 $i 1615-9314 $m Journal of separation science $n J Sep Sci $x MED00006463
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...