Pediatric Chronic Heart Failure: Age-Specific Considerations of Medical Therapy
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39589305
PubMed Central
PMC11627266
DOI
10.33549/physiolres.935438
PII: 935438
Knihovny.cz E-zdroje
- MeSH
- beta blokátory terapeutické užití MeSH
- chronická nemoc MeSH
- dítě MeSH
- inhibitory ACE terapeutické užití MeSH
- lidé MeSH
- srdeční selhání * farmakoterapie patofyziologie MeSH
- věkové faktory MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- beta blokátory MeSH
- inhibitory ACE MeSH
Chronic heart failure (CHF) is a rare entity in children but carries a burden of high mortality and morbidity. Medical treatment of pediatric CHF is largely based on guidelines for the adult population. In contrast to adults, evidence for the efficacy of medications in treating CHF in children is sparse. This may be due to the difficulty of conducting high-powered studies in children or to true differences in the mechanisms of CHF pathophysiology. Recent observations suggest that CHF in children differs from adults at the molecular and cellular levels. Different pathways are involved, leading to less fibrosis and hypertrophy than in adults, with potential implications for therapy. The main pathophysiological goals of medical treatment of pediatric CHF due to systemic left ventricular dysfunction are discussed in this review. These include preload and afterload optimization, diminishing cardiomyocyte apoptosis and necrosis as well as interstitial fibrosis, and optimizing myocardial oxygen consumption. The pediatric myocardium should be provided with optimal conditions to achieve its regenerative potential. The cornerstones of medical CHF therapy are angiotensin converting enzyme inhibitors (ACEI), beta blockers and mineralocorticoid receptor antagonists. There are potential benefits of tissue ACEI and ?1-selective beta blockers in children. Angiotensin receptor blockers are an alternative to ACEI and their slightly different mechanism of action may confer certain advantages and disadvantages. Diuretics are employed to achieve a euvolemic state. Digoxin is used more frequently in children than in adults. Promising new drugs already routinely used in adults include angiotensin receptor-neprilysin inhibitors and sodium-glucose contransporter 2 inhibitors. Key words: Pediatric heart failure, Heart failure with reduced ejection fraction (HFrEF), ACE inhibitor, Beta blocker, Digoxin.
Zobrazit více v PubMed
Shaddy RE, George AT, Jaecklin T, Lochlainn EN, Thakur L, Agrawal R, Solar-Yohay S, Chen F, Rossano JW, Severin T, Burch M. Systematic Literature Review on the Incidence and Prevalence of Heart Failure in Children and Adolescents. Pediatr Cardiol. 2017;39(3):1–22. doi: 10.1007/s00246-017-1787-2. PubMed DOI PMC
Kantor PF, Lougheed J, Dancea A, McGillion M, Barbosa N, Chan C, Dillenburg R, Atallah J, Buchholz H, Chant-Gambacort C, Conway J, Gardin L, George K, Greenway S, Human DG, Jeewa A, Price JF, Ross RD, Roche SL, Ryerson L, Soni R, Wilson J, Wong K. Presentation, Diagnosis, and Medical Management of Heart Failure in Children: Canadian Cardiovascular Society Guidelines. Canadian Journal of Cardiology. 2013;29(12):1535–1552. doi: 10.1016/j.cjca.2013.08.008. PubMed DOI
Kirk R, Dipchand AI, Rosenthal DN, Addonizio L, Burch M, Chrisant M, Dubin A, Everitt M, Gajarski R, Mertens L, Miyamoto S, Morales D, Pahl E, Shaddy R, Towbin J, Weintraub R. The International Society for Heart and Lung Transplantation Guidelines for the management of pediatric heart failure: Executive summary. Journal of Heart and Lung Transplantation. 2014;33:888–909. doi: 10.1016/j.healun.2014.06.002. PubMed DOI
Rossano JW, Shaddy RE. Update on pharmacological heart failure therapies in children: Do adult medications work in children and if not, why not? Circulation. 2014;129(5):607–612. doi: 10.1161/CIRCULATIONAHA.113.003615. PubMed DOI
Castaldi B, Cuppini E, Fumanelli J, Di Candia A, Sabatino J, Sirico D, Vida V, Padalino M, Di Salvo G. Chronic Heart Failure in Children: State of the Art and New Perspectives. J Clin Med. 2023;12(7) doi: 10.3390/jcm12072611. PubMed DOI PMC
Ahmed H, VanderPluym C. Medical management of pediatric heart failure. Cardiovasc Diagn Ther. 2021;11(1):323. doi: 10.21037/cdt-20-358. PubMed DOI PMC
Loss KL, Shaddy RE, Kantor PF. Recent and Upcoming Drug Therapies for Pediatric Heart Failure. Front Pediatr. 2021;9:11. doi: 10.3389/fped.2021.681224. PubMed DOI PMC
Weisert M, Su JA, Menteer J, Shaddy RE, Kantor PF. Drug Treatment of Heart Failure in Children: Gaps and Opportunities. Pediatric Drugs. 2022;24(2):121–136. doi: 10.1007/s40272-021-00485-9. PubMed DOI
Yamamoto F. Metabolic characteristics of immature myocardium. Gen Thorac Cardiovasc Surg. 2010;58(4):171–173. doi: 10.1007/s11748-009-0541-y. PubMed DOI
Siedner S, Krüger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfitzer G, Stehle R. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol. 2003;548(2):493–505. doi: 10.1113/jphysiol.2002.036509. PubMed DOI PMC
Racca AW, Klaiman JM, Pioner JM, Cheng Y, Beck AE, Moussavi-Harami F, Bamshad MJ, Regnier M. Contractile properties of developing human fetal cardiac muscle. J Physiol. 2016;594(2):437–452. doi: 10.1113/JP271290. PubMed DOI PMC
Lipsett DB, Frisk M, Aronsen JM, Nordén ES, Buonarati OR, Cataliotti A, Hell JW, Sjaastad I, Christensen G, Louch WE. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J Physiol. 2019;597(7):1833–1853. doi: 10.1113/JP277273. PubMed DOI PMC
Givens Raymond C, Schulze PC. Molecular Changes in Heart Failure. In: Eisen H, editor. Heart Failure: A Comprehensive Guide to Pathophysiology and Clinical Care. Springer; London: 2017. pp. 1–26. DOI
Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A. 2013;110(4):1446–1451. doi: 10.1073/pnas.1214608110. PubMed DOI PMC
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mechanisms of Disease. 2024;16(1) doi: 10.1002/wsbm.1629. PubMed DOI PMC
Ostadal B, Kolar F, Ostadalova I, Sedmera D, Olejnickova V, Hlavackova M, Alanova P. Developmental Aspects of Cardiac Adaptation to Increased Workload. J Cardiovasc Dev Dis. 2023;10(5) doi: 10.3390/jcdd10050205. PubMed DOI PMC
Canseco DC, Kimura W, Garg S, Mukherjee S, Bhattacharya S, Abdisalaam S, Das S, Asaithamby A, Mammen PPA, Sadek HA. Human Ventricular Unloading Induces Cardiomyocyte Proliferation. 2015 doi: 10.1016/j.jacc.2014.12.027. PubMed DOI PMC
Michel-Behnke I, Pavo I, Recla S, Khalil M, Jux C, Schranz D. Regenerative therapies in young hearts with structural or congenital heart disease. Transl Pediatr. 2019;8(2):140–150. doi: 10.21037/tp.2019.03.01. PubMed DOI PMC
Patel MD, Mohan J, Schneider C, Bajpai G, Purevjav E, Canter CE, Towbin J, Bredemeyer A, Lavine KJ. Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight. 2017;2(14) doi: 10.1172/jci.insight.94382. PubMed DOI PMC
Woulfe KC, Siomos AK, Nguyen H, SooHoo M, Galambos C, Stauffer BL, Sucharov C, Miyamoto S. Fibrosis and Fibrotic Gene Expression in Pediatric and Adult Patients With Idiopathic Dilated Cardiomyopathy. J Card Fail. 2017;23(4):314–324. doi: 10.1016/j.cardfail.2016.11.006. PubMed DOI PMC
Stauffer BL, Russell G, Nunley K, Miyamoto SD, Sucharov CC. miRNA Expression in Pediatric Failing Human Heart. J Mol Cell Cardiol. 2013;57(1):43. doi: 10.1016/j.yjmcc.2013.01.005. PubMed DOI PMC
Miyamoto SD, Stauffer BL, Nakano S, Sobus R, Nunley K, Nelson P, Sucharov CC. Beta-adrenergic adaptation in paediatric idiopathic dilated cardiomyopathy. Eur Heart J. 2014;35(1):33–41. doi: 10.1093/eurheartj/ehs229. PubMed DOI PMC
Schranz D, Voelkel NF. “Nihilism” of chronic heart failure therapy in children and why effective therapy is withheld. Eur J Pediatr. 2016;175(4):445. doi: 10.1007/s00431-016-2700-3. PubMed DOI PMC
Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology (Switzerland) 2012;122(2):104–112. doi: 10.1159/000339271. PubMed DOI
Das BB. Current state of pediatric heart failure. Children. 2018;5(7) doi: 10.3390/children5070088. PubMed DOI PMC
Recla S, Schmidt D, Logeswaran T, Esmaeili A, Schranz D. Pediatric heart failure therapy: why β1-receptor blocker, tissue ACE-I and mineralocorticoid-receptor-blocker? Transl Pediatr. 2019;8(2):127. doi: 10.21037/tp.2019.04.08. PubMed DOI PMC
Boudoulas KD, Borer JS, Boudoulas H. Heart rate, life expectancy and the cardiovascular system: therapeutic considerations. Cardiology. 2015;132(4):199–212. doi: 10.1159/000435947. PubMed DOI
Fox K, Borer JS, Camm AJ, Danchin N, Ferrari R, Lopez Sendon JL, Steg PG, Tardif JC, Tavazzi L, Tendera M. Resting Heart rate in cardiovascular disease. J Am Coll Cardiol. 2007;50(9):823–830. doi: 10.1016/j.jacc.2007.04.079. PubMed DOI
Rossano JW, Kantor PF, Shaddy RE, Shi L, Wilkinson JD, Jefferies JL, Czachor JD, Razoky H, Wirtz HS, Depre C, Lipshultz SE. Elevated heart rate and survival in children with dilated cardiomyopathy: A multicenter study from the pediatric cardiomyopathy registry. J Am Heart Assoc. 2020;9(15) doi: 10.1161/JAHA.119.015916. PubMed DOI PMC
Fox K, Ford I, Steg PG, Tendera M, Robertson M, Ferrari R. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial. Lancet. 2008;372(9641):817–821. https://doi.org/10.1016/S0140-6736(08)61170-8, https://doi.org/10.1016/S0140-6736(08)61171-X. PubMed DOI
Adorisio R, Pontrelli G, Cantarutti N, Bellettini E, Caiazza M, Mencarelli E, Limongelli G, Poli D, Drago F, Kirk R, Amodeo A. Heart rate reduction as a marker to optimize carvedilol treatment and enhance myocardial recovery in pediatric dilated cardiomyopathy. Front Physiol. 2022:13. doi: 10.3389/fphys.2022.1001752. PubMed DOI PMC
Schranz D, Recla S, Malcic I, Kerst G, Mini N, Akintuerk H. Pulmonary artery banding in dilative cardiomyopathy of young children: review and protocol based on the current knowledge. Transl Pediatr. 2019;8(2):151. doi: 10.21037/tp.2019.04.09. PubMed DOI PMC
Spigel ZA, Razzouk A, Nigro JJ, Karamlou TB, Kavarana MN, Roeser ME, Adachi I. Pulmonary artery banding for children with dilated cardiomyopathy: US Experience. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2020;23:69–76. doi: 10.1053/j.pcsu.2020.03.002. PubMed DOI
Ponzoni M, Castaldi B, Padalino MA. Pulmonary artery banding for dilated cardiomyopathy in children: returning to the bench from bedside. Children. 2022;9(9) doi: 10.3390/children9091392. PubMed DOI PMC
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, Deswal A, Drazner MH, Dunlay SM, Evers LR, Fang JC, Fedson SE, Fonarow GC, Hayek SS, Hernandez AF, Khazanie P, Kittleson MM, Lee CS, Link MS, Milano CA, Nnacheta LC, Sandhu AT, Stevenson LW, Vardeny O, Vest AR, Yancy CW. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):E895–E1032. doi: 10.1161/CIR.0000000000001063. PubMed DOI
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2023 August 25; doi: 10.1093/eurheartj/ehad195. PubMed DOI
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failureDeveloped by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI
Grenier MA, Fioravanti J, Truesdell SC, Mendelsohn AM, Vermilion RP, Lipshultz SE. Angiotensin-converting enzyme inhibitor therapy for ventricular dysfunction in infants, children and adolescents: a review. Prog Pediatr Cardiol. 2000;12:91–111. doi: 10.1016/S1058-9813(00)00061-8. PubMed DOI
Pinto B, Jadhav U, Singhai P, Sadhanandham S, Shah N. ACEI-induced cough: A review of current evidence and its practical implications for optimal CV risk reduction. Indian Heart J. 2020;72(5):345–350. doi: 10.1016/j.ihj.2020.08.007. PubMed DOI PMC
Díez CC, Khalil F, Schwender H, Dalinghaus M, Jovanovic I, Makowski N, Male C, Bajcetic M, Van Der Meulen M, De Wildt SN, Ablonczy L, Szatmári A, Klingmann I, Walsh J, Läer S. Pharmacotherapeutic management of paediatric heart failure and ACE-I use patterns: A European survey. BMJ Paediatr Open. 2019;3(1) doi: 10.1136/bmjpo-2018-000365. PubMed DOI PMC
Shah AD, Arora RR. Tissue angiotensin-converting enzyme inhibitors: Are they more effective than serum angiotensin-converting enzyme inhibitors? Clin Cardiol. 2005;28(12):551. doi: 10.1002/clc.4960281203. PubMed DOI PMC
Raasch W, Dendorfer A, Ball B, Dominiak P. The lipophilic properties of angiotensin i-converting enzyme inhibitors do not influence their diffusion through cultured endothelium. Jpn J Pharmacol. 1999;81(4):346–352. doi: 10.1016/S0021-5198(19)30745-0. PubMed DOI
Ruzicka M, Coletta E, White R, Davies R, Haddad H, Leenen FHH. Effects of ACE inhibitors on cardiac angiotensin II and aldosterone in humans: Relevance of lipophilicity and affinity for ACE. Am J Hypertens. 2010;23(11):1179–1182. doi: 10.1038/ajh.2010.148. PubMed DOI
Piepho RW. Overview of the angiotensin-converting-enzyme inhibitors. American Journal of Health-System Pharmacy. 2000;57(suppl_1):S3–S7. doi: 10.1093/ajhp/57.suppl_1.S3. PubMed DOI
Hirooka K, Koretsune Y, Yoshimoto S, Irino H, Abe H, Yasuoka Y, Yamamoto H, Hashimoto K, Chin W, Kusuoka H. Twice-daily administration of a long-acting angiotensin-converting enzyme inhibitor has greater effects on neurohumoral factors than a once-daily regimen in patients with chronic congestive heart failure. J Cardiovasc Pharmacol. 2004;43(1):56–60. doi: 10.1097/00005344-200401000-00009. PubMed DOI
Belgeri MT. Long-acting angiotensin-converting enzyme inhibitors in congestive heart failure: does multiple-daily dosing provide additional benefit over once-daily dosing? J Pharm Technol. 2005;21(4):203–206. doi: 10.1177/875512250502100404. DOI
Raes A, Malfait F, VanAken S, France A, Donckerwolcke R, Vande Walle J, Raes A. Lisinopril in paediatric medicine: a retrospective chart review of long-term treatment in children. J Renin-Angiotensin-Aldosterone System. 2007;8(1):3–12. doi: 10.3317/jraas.2007.004. PubMed DOI
Snauwaert E, Vande Walle J, De Bruyne P. Therapeutic efficacy and safety of ACE inhibitors in the hypertensive paediatric population: A review. Arch Dis Child. 2017;102(1):63–71. doi: 10.1136/archdischild-2016-310582. PubMed DOI
Levy BI, Mourad JJ. Renin angiotensin blockers and cardiac protection: from basics to clinical trials. Am J Hypertens. 2022;35(4):293–302. doi: 10.1093/ajh/hpab108. PubMed DOI
Awad K, Zaki MM, Mohammed M, Lewek J, Lavie CJ, Banach M. Effect of the renin-angiotensin system inhibitors on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2022;97(10):1808–1823. doi: 10.1016/j.mayocp.2022.06.036. PubMed DOI
Kaschina E, Namsolleck P, Unger T. AT2 receptors in cardiovascular and renal diseases. Pharmacol Res. 2017;125:39–47. doi: 10.1016/j.phrs.2017.07.008. PubMed DOI
Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, Konstam MA, Riegger G, Klinger GH, Neaton J, Sharma D, Thiyagarajan B. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial-the Losartan Heart Failure Survival Study ELITE II. The Lancet. 2000;355(9215):1582–1587. doi: 10.1016/S0140-6736(00)02213-3. PubMed DOI
Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. New Engl J Med. 2001;345(23):1667–1675. doi: 10.1056/NEJMoa010713. PubMed DOI
McMurray JJV, Pfeffer MA, Swedberg K, Dzau VJ. Which inhibitor of the renin-angiotensin system should be used in chronic heart failure and acute myocardial infarction? Circulation. 2004;110(20):3281–3288. doi: 10.1161/01.CIR.0000147274.83071.68. PubMed DOI
Nwaiwu O, Olayemi S, Amao O. Use of angiotensin II receptor blockers in children-a review of evidence. Niger J Paediatr. 2015;42(3):180–187. doi: 10.4314/njp.v42i3.2. DOI
Das BB. Plasma B-type natriuretic peptides in children with cardiovascular diseases. Pediatr Cardiol. 2010;31(8):1135–1145. doi: 10.1007/s00246-010-9758-x. PubMed DOI
McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR. Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. N Engl J Med. 2014;371(11):993–1004. doi: 10.1056/NEJMoa1409077. PubMed DOI
Shaddy R, Burch M, Kantor PF, Solar-Yohay S, Garito T, Zhang S, Kocun M, Bonnet D. Baseline characteristics of pediatric patients with heart failure due to systemic left ventricular systolic dysfunction in the PANORAMA-HF Trial. Circ Heart Fail. 2023;16(3):E009816. doi: 10.1161/CIRCHEARTFAILURE.122.009816. PubMed DOI PMC
Staessen J, Lijnen P, Fagard R, Verschueren LJ, Amery A. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981;91(3):457–465. doi: 10.1677/joe.0.0910457. PubMed DOI
Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–717. doi: 10.1056/NEJM199909023411001. PubMed DOI
Buck ML. Clinical experience with spironolactone in pediatrics. Ann Pharmacother. 2005;39(5):823–828. doi: 10.1345/aph.1E618. PubMed DOI
Li JS, Flynn JT, Portman R, Davis I, Ogawa M, Shi H, Pressler ML. The efficacy and safety of the novel aldosterone antagonist eplerenone in children with hypertension: a randomized, double-blind, dose-response study. J Pediatr. 2010;157(2):282–287. doi: 10.1016/j.jpeds.2010.02.042. PubMed DOI
Willenheimer R, Van Veldhuisen DJ, Silke B, Erdmann E, Follath F, Krum H, Ponikowski P, Skene A, Van De Ven L, Verkenne P, Lechat P. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: Results of the Randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005;112(16):2426–2435. doi: 10.1161/CIRCULATIONAHA.105.582320. PubMed DOI
Packer M, Fowler MB, Roecker EB, Coats AJS, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holcslaw TL, Amann-Zalan I, DeMets DL. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106(17):2194–2199. doi: 10.1161/01.CIR.0000035653.72855.BF. PubMed DOI
Hjalmarson Å, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, Wikstrand J, El Allaf D, Vítovec J, Aldershvile J, Halinen M, Dietz R, Neuhaus KL, Jánosi A, Thorgeirsson G, Dunselman PHJM, Gullestad L, Kuch J, Herlitz J, Riekenbacher P, Ball S, Gottlieb S, Deedwania P. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group. JAMA. 2000;283(10):1295–1302. doi: 10.1001/jama.283.10.1295. PubMed DOI
Bruns LA, Chrisant MK, Lamour JM, Shaddy RE, Pahl E, Blume ED, Hallowell S, Addonizio LJ, Canter CE. Carvedilol as therapy in pediatric heart failure: An initial multicenter experience. Journal of Pediatrics. 2001;138(4):505–511. doi: 10.1067/mpd.2001.113045. PubMed DOI
Shaddy RE, Boucek MM, Hsu DT, Boucek RJ, Canter CE, Mahony L, Ross RD, Pahl E, Blume ED, Dodd DA, Rosenthal DN, Burr J, LaSalle B, Holubkov R, Lukas MA, Tani LY. Carvedilol for children and adolescents with heart failure: a randomized controlled trial. JAMA. 2007;298(10):1171–1179. doi: 10.1001/jama.298.10.1171. PubMed DOI
Bernstein D, Fajardo G, Zhao M. The role of β-adrenergic receptors in heart failure: Differential regulation of cardiotoxicity and cardioprotection. Prog Pediatr Cardiol. 2011;31(1):35–38. doi: 10.1016/j.ppedcard.2010.11.007. PubMed DOI PMC
Albers S, Meibohm B, Mir TS, Läer S. Population pharmacokinetics and dose simulation of carvedilol in paediatric patients with congestive heart failure. Br J Clin Pharmacol. 2008;65(4):511–522. doi: 10.1111/j.1365-2125.2007.03046.x. PubMed DOI PMC
Sucharov CC, Hijmans JG, Sobus RD, Melhado WFA, Miyamoto SD, Stauffer BL. β-Adrenergic receptor antagonism in mice: a model for pediatric heart disease. J Appl Physiol. 2013;115(7):979. doi: 10.1152/japplphysiol.00627.2013. PubMed DOI PMC
Läer S, Mir TS, Behn F, Eiselt M, Scholz H, Venzke A, Meibohm B, Weil J. Carvedilol therapy in pediatric patients with congestive heart failure: A study investigating clinical and pharmacokinetic parameters. Am Heart J. 2002;143(5):916–922. doi: 10.1067/mhj.2002.121265. PubMed DOI
Gomez AB, Healy M, Donne GD, Bentley S, Makhecha S, Daubeney P, Naqvi N, Till J, Wong L. P10 Initiation of bisoprolol in paediatric patients - experience from a specialist paediatric cardiac centre. Arch Dis Child. 2023;108(5):5. doi: 10.1136/archdischild-2023-NPPG.9. DOI
Jain S, Vaidyanathan B. Digoxin in management of heart failure in children: Should it be continued or relegated to the history books? Ann Pediatr Cardiol. 2009;2(2):149–152. doi: 10.4103/0974-2069.58317. PubMed DOI PMC
Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289(7):871–878. doi: 10.1001/jama.289.7.871. PubMed DOI
Abdel Jalil MH, Abdullah N, Alsous MM, Saleh M, Abu-Hammour K. A systematic review of population pharmacokinetic analyses of digoxin in the paediatric population. Br J Clin Pharmacol. 2020;86(7):1267–1280. doi: 10.1111/bcp.14272. PubMed DOI PMC
Lee AY, Kutyifa V, Ruwald MH, McNitt S, Polonsky B, Zareba W, Moss AJ, Ruwald AC. Digoxin therapy and associated clinical outcomes in the MADIT-CRT trial. Heart Rhythm. 2015;12(9):2010–2017. doi: 10.1016/j.hrthm.2015.05.016. PubMed DOI
Vamos M, Erath JW, Hohnloser SH. Digoxin-associated mortality: A systematic review and meta-analysis of the literature. Eur Heart J. 2015;36(28):1831–1838. doi: 10.1093/eurheartj/ehv143. PubMed DOI
Ziff OJ, Lane DA, Samra M, Griffith M, Kirchhof P, Lip GYH, Steeds RP, Townend J, Kotecha D. Safety and efficacy of digoxin: systematic review and meta-analysis of observational and controlled trial data. BMJ. 2015;351:h4451. doi: 10.1136/bmj.h4451. PubMed DOI PMC
Oster ME, Kelleman M, McCracken C, Ohye RG, Mahle WT. Association of digoxin with interstage mortality: Results from the pediatric heart network single ventricle reconstruction trial public use dataset. J Am Heart Assoc. 2016;5(1):1–7. doi: 10.1161/JAHA.115.002566. PubMed DOI PMC
Brown DW, Mangeot C, Anderson JB, Peterson LE, King EC, Lihn SL, Neish SR, Fleishman C, Phelps C, Hanke S, Beekman RH, Lannon CM. Digoxin use is associated with reduced interstage mortality in patients with no history of arrhythmia after stage I palliation for single ventricle heart disease. J Am Heart Assoc: Cardiovascular and Cerebrovascular Disease. 2016;5(1) doi: 10.1161/JAHA.115.002376. PubMed DOI PMC
Moffett BS, Price JF. National prescribing trends for heart failure medications in children. Congenit Heart Dis. 2015;10(1):78–85. doi: 10.1111/chd.12183. PubMed DOI
DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res. 2006;53(5):399–406. doi: 10.1016/j.phrs.2006.03.006. PubMed DOI
Bonnet D, Berger F, Jokinen E, Kantor PF, Daubeney PEF. Ivabradine in children with dilated cardiomyopathy and symptomatic chronic heart failure. J Am Coll Cardiol. 2017 doi: 10.1016/j.jacc.2017.07.725. PubMed DOI
Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, Carson P, Anand I, Doehner W, Haass M, Komajda M, Miller A, Pehrson S, Teerlink JR, Schnaidt S, Zeller C, Schnee JM, Anker SD. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-Preserved Trial. Circulation. 2021;144(16):1284–1294. doi: 10.1161/CIRCULATIONAHA.121.056824. PubMed DOI PMC
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukát A, Ge J, Howlett JG, Katova T, Kitakaze M, Ljungman CEA, Merkely B, Nicolau JC, O’Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty KF, Jhund PS, Bengtsson O, Sjöstrand M, Langkilde AM. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995–2008. doi: 10.1056/NEJMoa1911303. PubMed DOI
Januzzi JL, Ibrahim NE. Understanding the mechanistic benefit of heart failure drugs matters. J Am Coll Cardiol. 2020;76(23):2752–2754. doi: 10.1016/j.jacc.2020.10.026. PubMed DOI
Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic Transl Sci. 2020;5(6):632–644. doi: 10.1016/j.jacbts.2020.02.004. PubMed DOI PMC
Newland DM, Law YM, Albers EL, Friedland-Little JM, Ahmed H, Kemna MS, Hong BJ. Early clinical experience with Dapagliflozin in children with heart failure. Pediatr Cardiol. 2023;44(1):146–152. doi: 10.1007/s00246-022-02983-0. PubMed DOI
Malik FI, Hartman JJ, Elias KA, Morgan BP, Rodriguez H, Brejc K, Anderson RL, Sueoka SH, Lee KH, Finer JT, Sakowicz R, Baliga R, Cox DR, Garard M, Godinez G, Kawas R, Kraynack E, Lenzi D, Lu PP, Muci A, Niu C, Qian X, Pierce DW, Pokrovskii M, Suehiro I, Sylvester S, Tochimoto T, Valdez C, Wang W, Katori T, Kass DA, Shen YT, Vatner SF, Morgans DJ. Cardiac myosin activation: a potential therapeutic approach for systolic heart failure. Science. 2011;331(6023):1439. doi: 10.1126/science.1200113. PubMed DOI PMC
Teerlink JR, Diaz R, Felker GM, McMurray JJV, Metra M, Solomon SD, Biering-Sørensen T, Böhm M, et al. Effect of ejection fraction on clinical outcomes in patients treated with omecamtiv mecarbil in GALACTIC-HF. J Am Coll Cardiol. 2021;78(2):97–108. doi: 10.1016/j.jacc.2021.04.065. PubMed DOI
Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, Lam CSP, Ponikowski P, Voors AA, Jia G, McNulty SE, Patel MJ, Roessig L, Koglin J, O’Connor CM. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2020;382:1883–1893. doi: 10.1056/NEJMoa1915928. PubMed DOI