• Je něco špatně v tomto záznamu ?

Concomitant use of polarization and negative phase contrast microscopy for the study of microorganisms

Z. Žižka,

. 2018 ; 63 (4) : 493-498. [pub] 20180224

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19002790

A simultaneous application of negative phase contrast and polarization microscopy was used to study the internal structure of microbial cells. Negative phase contrast allowed us to display the fine cell structures with a refractive index of light approaching that of the environment, e.g., the cytoplasm, and converted an invisible phase image to a visible amplitude one. In the polarizing microscope, cross-polarizing filters, together with first-order quartz compensator and a turntable, showed maximum birefringence of individual structures. Material containing algae was collected in ponds in the villages Sýkořice and Zbečno (Protected Landscape Area Křivoklátsko). Objects were studied in a laboratory microscope (Carl Zeiss Jena, type NfpK), equipped with a basic body In Ph 160 with an exchangeable module Ph, LOMO St. Petersburg turntable mounted on a centering holder of our own construction and a Nikon D 70 digital SLR camera. Anisotropic granules were found only in the members of two orders of algae (Euglenales, Euglenophyceae and Chlorococcales, Chlorophyceae). They always showed strong birefringence and differed in both number and size. An important finding concerned thin pellicles in genus Euglena (Euglenales, Euglenophyceae) which exhibited weak birefringence. In genus Pediastrum (Chlorococcales, Chlorophyceae), these granules were found only in living coenobium cells. In contrast, dead coenobium cells contained many granules without birefringence-an important finding. Another important finding included birefringent lamellar structure of the transverse cell wall and weak birefringence of pyrenoids in filamentous algae of genus Spirogyra (Zygnematales, Conjugatophyceae). It was clearly displayed by the negative phase contrast and has not been documented by other methods. This method can also record the very weak birefringence of the frustule of a diatom of genus Pinnularia (Naviculales, Bacillariophyceae), which was further reinforced by the use of quartz compensator-an important finding. Simultaneous use of negative phase contrast and polarization microscopy allowed us to study not only birefringent granules of storage substances in microorganisms, but also the individual lamellae of the cell walls of filamentous algae and very thin frustule walls in diatoms. These can be visualized only by this contrast method, which provides a higher resolution (subjective opinion only) than other methods such as positive phase contrast or relief contrast.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19002790
003      
CZ-PrNML
005      
20190116123314.0
007      
ta
008      
190116s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s12223-017-0578-8 $2 doi
035    __
$a (PubMed)29478213
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Žižka, Zdeněk $u Laboratory of Characterization of Molecular Structures, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague 4-Krč, Czech Republic. zizka@biomed.cas.cz.
245    10
$a Concomitant use of polarization and negative phase contrast microscopy for the study of microorganisms / $c Z. Žižka,
520    9_
$a A simultaneous application of negative phase contrast and polarization microscopy was used to study the internal structure of microbial cells. Negative phase contrast allowed us to display the fine cell structures with a refractive index of light approaching that of the environment, e.g., the cytoplasm, and converted an invisible phase image to a visible amplitude one. In the polarizing microscope, cross-polarizing filters, together with first-order quartz compensator and a turntable, showed maximum birefringence of individual structures. Material containing algae was collected in ponds in the villages Sýkořice and Zbečno (Protected Landscape Area Křivoklátsko). Objects were studied in a laboratory microscope (Carl Zeiss Jena, type NfpK), equipped with a basic body In Ph 160 with an exchangeable module Ph, LOMO St. Petersburg turntable mounted on a centering holder of our own construction and a Nikon D 70 digital SLR camera. Anisotropic granules were found only in the members of two orders of algae (Euglenales, Euglenophyceae and Chlorococcales, Chlorophyceae). They always showed strong birefringence and differed in both number and size. An important finding concerned thin pellicles in genus Euglena (Euglenales, Euglenophyceae) which exhibited weak birefringence. In genus Pediastrum (Chlorococcales, Chlorophyceae), these granules were found only in living coenobium cells. In contrast, dead coenobium cells contained many granules without birefringence-an important finding. Another important finding included birefringent lamellar structure of the transverse cell wall and weak birefringence of pyrenoids in filamentous algae of genus Spirogyra (Zygnematales, Conjugatophyceae). It was clearly displayed by the negative phase contrast and has not been documented by other methods. This method can also record the very weak birefringence of the frustule of a diatom of genus Pinnularia (Naviculales, Bacillariophyceae), which was further reinforced by the use of quartz compensator-an important finding. Simultaneous use of negative phase contrast and polarization microscopy allowed us to study not only birefringent granules of storage substances in microorganisms, but also the individual lamellae of the cell walls of filamentous algae and very thin frustule walls in diatoms. These can be visualized only by this contrast method, which provides a higher resolution (subjective opinion only) than other methods such as positive phase contrast or relief contrast.
650    _2
$a anizotropie $7 D016880
650    _2
$a dvojitý lom $7 D001718
650    _2
$a biologie buňky $x přístrojové vybavení $7 D003585
650    _2
$a buněčná stěna $x chemie $7 D002473
650    _2
$a Chlorophyta $x chemie $x cytologie $7 D000460
650    _2
$a cytologické techniky $x metody $7 D003584
650    _2
$a cytoplazma $x chemie $7 D003593
650    _2
$a rozsivky $x chemie $x cytologie $7 D017377
650    _2
$a Euglenida $x chemie $x cytologie $7 D016822
650    12
$a mikroskopie fázově kontrastní $7 D008858
650    12
$a polarizační mikroskopie $7 D008859
650    _2
$a Zygnematales $x chemie $x cytologie $7 D058129
655    _2
$a časopisecké články $7 D016428
773    0_
$w MED00011005 $t Folia microbiologica $x 1874-9356 $g Roč. 63, č. 4 (2018), s. 493-498
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29478213 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190116 $b ABA008
991    __
$a 20190116123525 $b ABA008
999    __
$a ok $b bmc $g 1367967 $s 1040948
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 63 $c 4 $d 493-498 $e 20180224 $i 1874-9356 $m Folia microbiologica $n Folia microbiol. (Prague) $x MED00011005
LZP    __
$a Pubmed-20190116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...