• Je něco špatně v tomto záznamu ?

Využití peptigelu s nanovlákny k léčbě defektů kostní tkáně
[Use of the Peptigel with Nanofibres in the Bone Defects Healing]

R. Srnec, R. Divín, M. Škorič, R. Snášil, M. Krbec, A. Nečas

. 2018 ; 85 (5) : 359-365.

Jazyk čeština Země Česko

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19008824

Grantová podpora
NV16-28637A MZ0 CEP - Centrální evidence projektů

Digitální knihovna NLK
Plný text - Článek
Zdroj

E-zdroje Online

NLK Free Medical Journals od 2006

Odkazy

PubMed 30383533

INTRODUCTION Traumatic bone injuries or pathological processes may sometimes result in very extensive bone defects. Currently, the standard procedure applied in clinical humane as well as veterinary medicine to fill a bone defect is the autogenous bone graft which, however, necessitates a more invasive procedure for the patient and in the cases of extensive defects it fails to provide adequate amount of graft. Synthetic bone replacements can be used with no further burden for the patient and can simultaneously be used as the carriers for bioactive molecules or therapeutic drugs. For clinical use, an easy and simple application is one of the requirements that have to be taken into consideration. These requirements are best satisfied by preparations in the form of gel, which may be injected into the defects of various shapes even through minimal surgical approach. MATERIAL AND METHODS Synthetic transparent PGD-AlphaProA hydro-peptide-gel was used as a basis to develop a composite hydrogel scaffold. This gel was enriched by cryogenically ground poly- -caprolactone nanofibers (PCL) in a ratio of 1 ml of gel to 16 μg of nanofibres. In experimental animals (laboratory rat Wistar, n=20), a single regular circular defect of 1.5 mm in diameter was drilled by a low speed drill machine across the whole width of distal femur diaphysis, identically in both the hind legs. In the right hindleg, this defect was filled by injection of 0.05 ml of the composite peptide gel with nanofibers (experimental defect). In the contralateral limb a similar defect was left untreated, without filling (control defect), for spontaneous healing. The group of experimental animals was subsequently divided into four sub-groups (A, B, C, D) for the purpose of further follow-up. One week after the surgical implantation, in the first group of experimental animals (Group A; n = 5) lege artis euthanasia was performed, a radiological examination of both the hind legs was carried out and a sample of the bone from both the control and experimental defect was collected for histologic examination. The other groups of experimental animals were evaluated similarly at 2, 4 and 6 weeks after the surgical procedure (Group B, C, D; n = 5). These groups of experimental animals were assessed using various histological techniques by two independent pathologists. RESULTS A difference between the control and the experimental bone defect was observed only at the healing stage at two weeks after the implantation, when a tendency for greater formation of new bone trabeculas was seen in the defect treated with the composite hydro-peptide-gel with PCL nanofibers. The results show a slightly higher angiogenesis and cellularity at the bone defect site with an increase of newly formed bone tissue and faster colonisation of lamellar bone structures by bone marrow cells at early stages of the healing process (1-2 weeks old defect). In the experimental and control groups, at the later stage of healing (4-6 weeks old defect), the process of healing and bone modelling at the defect site shows no detectable morphological differences. CONCLUSIONS The experimental use of hydro-peptide-gel with PCL nanofibers in vivo in laboratory rats shows very good applicability into the defect site and, compared to the untreated defect within two weeks after the implantation, accelerates the bone healing. This fact could be an advantage especially at the early stage of healing, and thus accelerate the healing of more extensive defects. Key words: peptide gel, polycaprolactone, PCL, replacement, bone, healing, scaffold, nanofibers, biomaterial.

Use of the Peptigel with Nanofibres in the Bone Defects Healing

000      
00000naa a2200000 a 4500
001      
bmc19008824
003      
CZ-PrNML
005      
20190320100100.0
007      
ta
008      
190307s2018 xr a f 000 0|cze||
009      
AR
024    7_
$2 doi $a 10.55095/achot2018/061
035    __
$a (PubMed)30383533
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a cze $b eng
044    __
$a xr
100    1_
$a Srnec, Robert $u Oddělení chirurgie a ortopedie, Klinika chorob psů a koček, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno $7 xx0141235
245    10
$a Využití peptigelu s nanovlákny k léčbě defektů kostní tkáně / $c R. Srnec, R. Divín, M. Škorič, R. Snášil, M. Krbec, A. Nečas
246    31
$a [Use of the Peptigel with Nanofibres in the Bone Defects Healing].
520    9_
$a INTRODUCTION Traumatic bone injuries or pathological processes may sometimes result in very extensive bone defects. Currently, the standard procedure applied in clinical humane as well as veterinary medicine to fill a bone defect is the autogenous bone graft which, however, necessitates a more invasive procedure for the patient and in the cases of extensive defects it fails to provide adequate amount of graft. Synthetic bone replacements can be used with no further burden for the patient and can simultaneously be used as the carriers for bioactive molecules or therapeutic drugs. For clinical use, an easy and simple application is one of the requirements that have to be taken into consideration. These requirements are best satisfied by preparations in the form of gel, which may be injected into the defects of various shapes even through minimal surgical approach. MATERIAL AND METHODS Synthetic transparent PGD-AlphaProA hydro-peptide-gel was used as a basis to develop a composite hydrogel scaffold. This gel was enriched by cryogenically ground poly- -caprolactone nanofibers (PCL) in a ratio of 1 ml of gel to 16 μg of nanofibres. In experimental animals (laboratory rat Wistar, n=20), a single regular circular defect of 1.5 mm in diameter was drilled by a low speed drill machine across the whole width of distal femur diaphysis, identically in both the hind legs. In the right hindleg, this defect was filled by injection of 0.05 ml of the composite peptide gel with nanofibers (experimental defect). In the contralateral limb a similar defect was left untreated, without filling (control defect), for spontaneous healing. The group of experimental animals was subsequently divided into four sub-groups (A, B, C, D) for the purpose of further follow-up. One week after the surgical implantation, in the first group of experimental animals (Group A; n = 5) lege artis euthanasia was performed, a radiological examination of both the hind legs was carried out and a sample of the bone from both the control and experimental defect was collected for histologic examination. The other groups of experimental animals were evaluated similarly at 2, 4 and 6 weeks after the surgical procedure (Group B, C, D; n = 5). These groups of experimental animals were assessed using various histological techniques by two independent pathologists. RESULTS A difference between the control and the experimental bone defect was observed only at the healing stage at two weeks after the implantation, when a tendency for greater formation of new bone trabeculas was seen in the defect treated with the composite hydro-peptide-gel with PCL nanofibers. The results show a slightly higher angiogenesis and cellularity at the bone defect site with an increase of newly formed bone tissue and faster colonisation of lamellar bone structures by bone marrow cells at early stages of the healing process (1-2 weeks old defect). In the experimental and control groups, at the later stage of healing (4-6 weeks old defect), the process of healing and bone modelling at the defect site shows no detectable morphological differences. CONCLUSIONS The experimental use of hydro-peptide-gel with PCL nanofibers in vivo in laboratory rats shows very good applicability into the defect site and, compared to the untreated defect within two weeks after the implantation, accelerates the bone healing. This fact could be an advantage especially at the early stage of healing, and thus accelerate the healing of more extensive defects. Key words: peptide gel, polycaprolactone, PCL, replacement, bone, healing, scaffold, nanofibers, biomaterial.
650    _2
$a látky indukující angiogenezi $7 D043925
650    _2
$a zvířata $7 D000818
650    _2
$a biokompatibilní materiály $x škodlivé účinky $x terapeutické užití $7 D001672
650    _2
$a nemoci kostí $x patologie $x terapie $7 D001847
650    _2
$a kostní náhrady $x škodlivé účinky $x terapeutické užití $7 D018786
650    _2
$a transplantace kostí $x metody $7 D016025
650    _2
$a kosti a kostní tkáň $x abnormality $x cytologie $x zranění $x patologie $7 D001842
650    _2
$a buněčné struktury $x fyziologie $7 D022082
650    _2
$a femur $x chirurgie $7 D005269
650    _2
$a hojení fraktur $x fyziologie $7 D017102
650    _2
$a modely u zvířat $7 D023421
650    _2
$a nanovlákna $x terapeutické užití $7 D057139
650    _2
$a polyestery $x aplikace a dávkování $7 D011091
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Divín, Radek. $7 xx0255506 $u Oddělení tkáňového inženýrství, Ústav experimentální medicíny Akademie věd ČR, Praha
700    1_
$a Škorič, Miša, $d 1977- $7 mzk2011653513 $u Ústav patologické morfologie a parazitologie, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno
700    1_
$a Snášil, Robert. $7 xx0234680 $u Oddělení chirurgie a ortopedie, Klinika chorob psů a koček, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno
700    1_
$a Krbec, Martin, $d 1956- $7 pna2005280873 $u Ortopedicko-traumatologická klinika, Fakultní nemocnice Královské Vinohrady a 3. lékařská fakulta UK, Praha
700    1_
$a Nečas, Alois, $d 1966- $7 mzk2004229096 $u Oddělení chirurgie a ortopedie, Klinika chorob psů a koček, Fakulta veterinárního lékařství, Veterinární a farmaceutická univerzita Brno
773    0_
$w MED00011021 $t Acta chirurgiae orthopaedicae et traumatologiae Čechoslovaca $x 0001-5415 $g Roč. 85, č. 5 (2018), s. 359-365
910    __
$a ABA008 $b A 8 $c 507 $y 4 $z 0
990    __
$a 20190307 $b ABA008
991    __
$a 20190312144148 $b ABA008
999    __
$a ok $b bmc $g 1386350 $s 1047082
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 85 $c 5 $d 359-365 $i 0001-5415 $m Acta chirurgiae orthopaedicae et traumatologiae Čechoslovaca $n Acta chir. orthop. traumatol. Čechoslovaca $x MED00011021
GRA    __
$a NV16-28637A $p MZ0
LZP    __
$b NLK118 $a Pubmed-20190307

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...