-
Je něco špatně v tomto záznamu ?
Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements
KB. Mishra, A. Mishra, J. Kubásek, O. Urban, AG. Heyer, . Govindjee,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-01-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2011-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do Před 1 rokem
- MeSH
- aklimatizace MeSH
- Arabidopsis metabolismus MeSH
- chlorofyl a metabolismus MeSH
- fotosyntéza fyziologie MeSH
- nízká teplota MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
Global Change Research Institute Czech Academy of Sciences Bělidla 986 4a 603 00 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19012277
- 003
- CZ-PrNML
- 005
- 20190416121900.0
- 007
- ta
- 008
- 190405s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s11120-018-0588-7 $2 doi
- 035 __
- $a (PubMed)30306531
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Mishra, Kumud B $u Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic. mishra.k@czechglobe.cz. Department of Experimental Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. mishra.k@czechglobe.cz.
- 245 10
- $a Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements / $c KB. Mishra, A. Mishra, J. Kubásek, O. Urban, AG. Heyer, . Govindjee,
- 520 9_
- $a Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
- 650 _2
- $a aklimatizace $7 D000064
- 650 _2
- $a Arabidopsis $x metabolismus $7 D017360
- 650 _2
- $a chlorofyl a $x metabolismus $7 D000077194
- 650 _2
- $a nízká teplota $7 D003080
- 650 _2
- $a fotosyntéza $x fyziologie $7 D010788
- 650 _2
- $a teplota $7 D013696
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mishra, Anamika $u Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- 700 1_
- $a Kubásek, Jiří $u Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- 700 1_
- $a Urban, Otmar $u Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- 700 1_
- $a Heyer, Arnd G $u Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70567, Stuttgart, Germany.
- 700 1_
- $a Govindjee, $u Department of Plant Biology, Department of Biochemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- 773 0_
- $w MED00006488 $t Photosynthesis research $x 1573-5079 $g Roč. 139, č. 1-3 (2019), s. 123-143
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30306531 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190416121925 $b ABA008
- 999 __
- $a ok $b bmc $g 1391587 $s 1050582
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 139 $c 1-3 $d 123-143 $e 20181010 $i 1573-5079 $m Photosynthesis research $n Photosynth Res $x MED00006488
- LZP __
- $a Pubmed-20190405