Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records

J. Sebek, R. Bortel, P. Sovka,

. 2018 ; 13 (8) : e0201900. [pub] 20180814

Jazyk angličtina Země Spojené státy americké

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012464

This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular artifacts, which has been previously attributed to the phenomenon called overlearning. We address this problem by projecting an EEG record into several subspaces with a lower dimension, and perform the ICA on each subspace separately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and muscular artifacts are better separated. Once the muscular artifacts are removed, the signals in the individual subspaces are combined to provide an artifact free EEG record. We show that for short signals and high number of EEG channels our approach outperforms the currently available ICA based algorithms for muscular artifact removal. The proposed technique can efficiently suppress ICA overlearning for short signal segments of high density EEG signals.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012464
003      
CZ-PrNML
005      
20190409160850.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0201900 $2 doi
035    __
$a (PubMed)30106969
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sebek, Jan $u Dept. of Circuit Theory, Czech Technical University, Faculty of Electrical Engineering, Prague, Czech Republic.
245    10
$a Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records / $c J. Sebek, R. Bortel, P. Sovka,
520    9_
$a This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular artifacts, which has been previously attributed to the phenomenon called overlearning. We address this problem by projecting an EEG record into several subspaces with a lower dimension, and perform the ICA on each subspace separately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and muscular artifacts are better separated. Once the muscular artifacts are removed, the signals in the individual subspaces are combined to provide an artifact free EEG record. We show that for short signals and high number of EEG channels our approach outperforms the currently available ICA based algorithms for muscular artifact removal. The proposed technique can efficiently suppress ICA overlearning for short signal segments of high density EEG signals.
650    _2
$a mladiství $7 D000293
650    12
$a algoritmy $7 D000465
650    12
$a artefakty $7 D016477
650    12
$a elektroencefalografie $x metody $7 D004569
650    _2
$a elektromyografie $x metody $7 D004576
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a svaly $x fyziologie $7 D009132
650    _2
$a přeučení $7 D010056
650    12
$a počítačové zpracování signálu $7 D012815
650    _2
$a mladý dospělý $7 D055815
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bortel, Radoslav $u Dept. of Circuit Theory, Czech Technical University, Faculty of Electrical Engineering, Prague, Czech Republic.
700    1_
$a Sovka, Pavel $u Dept. of Circuit Theory, Czech Technical University, Faculty of Electrical Engineering, Prague, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 8 (2018), s. e0201900
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30106969 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190409160905 $b ABA008
999    __
$a ok $b bmc $g 1391774 $s 1050769
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 8 $d e0201900 $e 20180814 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...