Hyperbaric Oxygen Promotes Chronic Wound Healing in Sprague-Dawley Rats by Inhibiting Pyroptosis
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39903894
PubMed Central
PMC11835222
DOI
10.33549/physiolres.935398
PII: 935398
Knihovny.cz E-zdroje
- MeSH
- hojení ran * fyziologie účinky léků MeSH
- hyperbarická oxygenace * metody MeSH
- krysa rodu Rattus MeSH
- potkani Sprague-Dawley MeSH
- protein NLRP3 metabolismus MeSH
- proteiny vázající fosfáty metabolismus MeSH
- pyroptóza * fyziologie účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protein NLRP3 MeSH
- proteiny vázající fosfáty MeSH
This study aimed to establish a rat model of chronic wounds to observe the effects of hyperbaric oxygen (HBO) on chronic wound repair and pyroptosis and explore the potential role of pyroptosis in the pathogenesis of chronic wounds. Sprague-Dawley (SD) rats were randomly divided into acute wound group (control group), chronic wound group (model group), chronic wound + HBO treatment group (HBO group), and chronic wound + VX-765 (IL-converting enzyme/Caspase-1 inhibitor) treatment group (VX-765 group). After 7 days of respective interventions, the wound healing status was observed, and wound tissue specimens were collected. Hematoxylin and eosin (HE) staining was used to observe the pathological changes in wound tissues. Transmission electron microscopy was used to observe the changes in cellular ultrastructure. Immunofluorescence was used to observe the expression and localization of vascular endothelial growth factor A (VEGF-A) and the N-terminal domain of gasdermin D (GSDMD-N). Western blot was conducted to detect the expression of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), cysteine-requiring aspartate protease-1 (Caspase-1), VEGF-A, and GSDMD-N proteins in wound tissues. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of NLRP3, Caspase-1, and GSDMD genes. Enzyme-linked immunosorbent assay (ELISA) was performed to observe the expression of the inflammatory cytokines interleukin-1 beta (IL-1beta) and IL-18. The results showed that the HBO group had a faster wound healing rate and better pathology improvement compared to the model group. The expression level of VEGF-A was higher in the HBO group compared to the model group, while the expression levels of NLRP3, Caspase-1, GSDMD, IL-1beta, and IL-18 were lower than those in the model group. HBO can effectively promote the healing of chronic wounds, and the regulation of pyroptosis may be one of its mechanisms of action. Keywords: Hyperbaric oxygen, Pyroptosis, Chronic wounds, Inflammatory.
Zobrazit více v PubMed
Kolimi P, Narala S, Nyavanandi D, Youssef A, Dudhipala N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells-Basel. 2022:11. doi: 10.3390/cells11152439. PubMed DOI PMC
Madero J, Salvador M, Kadouch J, Munoz-Gonzalez C, Fakih-Gomez N. Role of Hyperbaric Oxygen in Filler-Induced Vascular Occlusion. Aesthet Plast Surg. 2024 doi: 10.1007/s00266-024-03920-7. PubMed DOI
Ruzicka J, Dejmek J, Bolek L, Benes J, Kuncova J. Hyperbaric oxygen influences chronic wound healing - a cellular level review. Physiol Res. 2021;70:S261–S273. doi: 10.33549/physiolres.934822. PubMed DOI PMC
Xu P, Li F, Tang H. Pyroptosis and airway homeostasis regulation. Physiol Res. 2023;72:1–13. doi: 10.33549/physiolres.934971. PubMed DOI PMC
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Tar. 2021;6:128. doi: 10.1038/s41392-021-00507-5. PubMed DOI PMC
Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0. PubMed DOI PMC
Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: the inflammasome and beyond. Innate Immun-London. 2014;20:115–125. doi: 10.1177/1753425913484374. PubMed DOI
Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. Embo J. 2016;35:1766–1778. doi: 10.15252/embj.201694696. PubMed DOI PMC
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–158. doi: 10.1038/nature18629. PubMed DOI PMC
Modi P, Shah BM, Patel S. Interleukin-1beta converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem. 2023;261:115861. doi: 10.1016/j.ejmech.2023.115861. PubMed DOI
Zheng H, Na H, Yao J, Su S, Han F, Li X, Chen X. 16S rRNA seq-identified Corynebacterium promotes pyroptosis to aggravate diabetic foot ulcer. Bmc Infect Dis. 2024;24:366. doi: 10.1186/s12879-024-09235-x. PubMed DOI PMC
Xiong W, Zhang X, Zhou J, Chen J, Liu Y, Yan Y, Tan M, et al. Astragaloside IV promotes exosome secretion of endothelial progenitor cells to regulate PI3KR2/SPRED1 signaling and inhibit pyroptosis of diabetic endothelial cells. Cytotherapy. 2024;26:36–50. doi: 10.1016/j.jcyt.2023.08.013. PubMed DOI
Chen Z, Yuan M, Li H, Li L, Luo B, Lu L, Xiang Q, et al. Succinylated chitosan derivative restore HUVEC cells function damaged by TNF-alpha and high glucose in vitro and enhanced wound healing. Int J Biol Macromol. 2024;265:130825. doi: 10.1016/j.ijbiomac.2024.130825. PubMed DOI
Ye Y, Feng Z, Tian S, Yang Y, Jia Y, Wang G, Wang J, et al. HBO Alleviates Neural Stem Cell Pyroptosis via lncRNA-H19/miR-423-5p/NLRP3 Axis and Improves Neurogenesis after Oxygen Glucose Deprivation. Oxid Med Cell Longev. 2022;2022:9030771. doi: 10.1155/2022/9030771. PubMed DOI PMC
Xu JN, Que HF, Tang HJ. Effects and action mechanisms of Buyang Huanwu Decoction in wound healing of chronic skin ulcers of rats. Zhong Xi Yi Jie He Xue Bao. 2009;7:1145–1149. doi: 10.3736/jcim20091210. PubMed DOI
Yadav VP, Shukla A, Choudhury S, Singh R, Anand M, Prabhu SN. IL1beta/ TNFalpha/COX-2/VEGF axis responsible for effective healing potential of C-glucoside xanthone (mangiferin) based ointment in immunocompromised rats. Cytokine. 2022;158:156012. doi: 10.1016/j.cyto.2022.156012. PubMed DOI
Shields CA, Tardo GA, Wang X, Peacock G, Robbins M, Glenn H, Wilson R, et al. Inhibition of Caspase 1 Reduces Blood Pressure, Cytotoxic NK Cells, and Inflammatory T-Helper 17 Cells in Placental Ischemic Rats. Int J Mol Sci. 2024:25. doi: 10.3390/ijms25020863. PubMed DOI PMC
Altavilla D, Galeano M, Bitto A, Minutoli L, Squadrito G, Seminara P, Venuti FS, et al. Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock. 2005;24:85–91. doi: 10.1097/01.shk.0000168523.37796.89. PubMed DOI
Lindenmann J, Kamolz L, Graier W, Smolle J, Smolle-Juettner FM. Hyperbaric oxygen therapy and tissue regeneration: a literature survey. Biomedicines. 2022:10. doi: 10.3390/biomedicines10123145. PubMed DOI PMC
Huang X, Liang P, Jiang B, Zhang P, Yu W, Duan M, Guo L, et al. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 2020;259:118246. doi: 10.1016/j.lfs.2020.118246. PubMed DOI
Gottrup F, Dissemond J, Baines C, Frykberg R, Jensen PO, Kot J, Kroger K, et al. Use of Oxygen Therapies in Wound Healing. J Wound Care. 2017;26:S1–S43. doi: 10.12968/jowc.2017.26.Sup5.S1. PubMed DOI
Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14:89–96. doi: 10.1111/iwj.12557. PubMed DOI PMC
Schafer M, Werner S. Oxidative stress in normal and impaired wound repair. Pharmacol Res. 2008;58:165–171. doi: 10.1016/j.phrs.2008.06.004. PubMed DOI
Mrakic-Sposta S, Vezzoli A, Garetto G, Paganini M, Camporesi E, Giacon TA, Dellanoce C, et al. Hyperbaric oxygen therapy counters oxidative stress/inflammation-driven symptoms in long COVID-19 patients: preliminary outcomes. Metabolites. 2023:13. doi: 10.3390/metabo13101032. PubMed DOI PMC
Cannellotto M, Yasells GA, Landa MS. Hyperoxia: Effective Mechanism of Hyperbaric Treatment at Mild-Pressure. Int J Mol Sci. 2024:25. doi: 10.3390/ijms25020777. PubMed DOI PMC
Yang Z, Ren K, Chen Y, Quanji X, Cai C, Yin J. Oxygen-generating hydrogels as oxygenation therapy for accelerated chronic wound healing. Adv Healthc Mater. 2024;13:e2302391. doi: 10.1002/adhm.202302391. PubMed DOI
Wang F, Ye J, Zhu W, Ge R, Hu C, Qian Y, Li Y, et al. Galectin-3 mediates endotoxin internalization and caspase-4/11 activation in tubular epithelials and macrophages during sepsis and sepsis-associated acute kidney injury. Inflammation. 2024;47:454–468. doi: 10.1007/s10753-023-01928-w. PubMed DOI
Liu Z, Wang C, Lin C. Pyroptosis as a double-edged sword: The pathogenic and therapeutic roles in inflammatory diseases and cancers. Life Sci. 2023;318:121498. doi: 10.1016/j.lfs.2023.121498. PubMed DOI
Wijesooriya LI, Waidyathilake D. Antimicrobial properties of nonantibiotic agents for effective treatment of localized wound infections: a minireview. int j low extr wound. 2022;21:207–218. doi: 10.1177/1534734620939748. PubMed DOI
Ganesh GV, Ramkumar KM. Macrophage mediation in normal and diabetic wound healing responses. Inflamm Res. 2020;69:347–363. doi: 10.1007/s00011-020-01328-y. PubMed DOI
Jensen PO, Moller SA, Lerche CJ, Moser C, Bjarnsholt T, Ciofu O, Faurholt-Jepsen D, et al. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air. Biofilm. 2019;1:100008. doi: 10.1016/j.bioflm.2019.100008. PubMed DOI PMC