• Je něco špatně v tomto záznamu ?

Probabilistic functional tractography of the human cortex revisited

L. Trebaul, P. Deman, V. Tuyisenge, M. Jedynak, E. Hugues, D. Rudrauf, M. Bhattacharjee, F. Tadel, B. Chanteloup-Foret, C. Saubat, GC. Reyes Mejia, C. Adam, A. Nica, M. Pail, F. Dubeau, S. Rheims, A. Trébuchon, H. Wang, S. Liu, T. Blauwblomme, M....

. 2018 ; 181 (-) : 414-429. [pub] 20180717

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012530

In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.

Brno Epilepsy Center Department of Neurology St Anne's University Hospital and Medical Faculty of Masaryk University Brno Czech Republic

Canton Sanjiu Brain Hospital Epilepsy Center Jinan University Guangzhou China

Centre Hospitalier Universitaire de Nancy Nancy France

CHU Grenoble Alpes Neurology Department Grenoble France

Department of Basic and Clinical Neuroscience Institute of Psychiatry Psychology and Neuroscience London UK

Department of Functional Neurology and Epileptology Hospices Civils de Lyon and University of Lyon Lyon France

Department of Neuroscience Bambino Gesù Children's Hospital IRRCS Rome Italy

Department of Neurosurgery Sainte Anne Hospital Paris France

Department of Pediatric Neurosurgery Hôpital Necker Enfants Malades Université Paris 5 Descartes Sorbonne Paris Cité Paris France

Epilepsy Center Medical Center University of Freiburg Faculty of Medicine University of Freiburg Germany

Epilepsy Monitoring Unit Department of Neurology Hospital del Mar IMIM Barcelona Spain

Epilepsy Surgery Center Niguarda Hospital Milan Italy

Epilepsy Unit Department of Clinical Neurophysiology Lille University Medical Center Lille France

Epilepsy Unit Dept of Neurology Pitié Salpêtrière Hospital APHP Paris France

Epilepsy Unit Hospital for Children and Adolescents Helsinki Finland

Inserm U1216 Grenoble F 38000 France

Montreal Neurological Institute and Hospital Montreal Canada

Multidisciplinary Epilepsy Unit Hospital Universitario y Politécnico La Fe Valencia Spain

Neurology Department CHU Rennes France

Neurology Department University Emergency Hospital Bucharest Romania

Neurophysiology and Epilepsy Unit Bicêtre Hospital France

Service de neurochirurgie pédiatrique Fondation Rothschild Paris France

Service de Neurophysiologie Clinique APHM Hôpitaux de la Timone Marseille France

Univ Grenoble Alpes Grenoble Institut des Neurosciences GIN Grenoble F 38000 France

University Hospital Department of Neurology Strasbourg France

University Hospital Department of Neurology Toulouse France

Yuquan Hospital Epilepsy Center Tsinghua University Beijing China

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012530
003      
CZ-PrNML
005      
20210924104805.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2018.07.039 $2 doi
035    __
$a (PubMed)30025851
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Trebaul, Lena $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
245    10
$a Probabilistic functional tractography of the human cortex revisited / $c L. Trebaul, P. Deman, V. Tuyisenge, M. Jedynak, E. Hugues, D. Rudrauf, M. Bhattacharjee, F. Tadel, B. Chanteloup-Foret, C. Saubat, GC. Reyes Mejia, C. Adam, A. Nica, M. Pail, F. Dubeau, S. Rheims, A. Trébuchon, H. Wang, S. Liu, T. Blauwblomme, M. Garcés, L. De Palma, A. Valentin, EL. Metsähonkala, AM. Petrescu, E. Landré, W. Szurhaj, E. Hirsch, L. Valton, R. Rocamora, A. Schulze-Bonhage, I. Mindruta, S. Francione, L. Maillard, D. Taussig, P. Kahane, O. David,
520    9_
$a In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
650    _2
$a mladiství $7 D000293
650    _2
$a dospělí $7 D000328
650    _2
$a atlasy jako téma $7 D001271
650    _2
$a mozková kůra $x diagnostické zobrazování $x patofyziologie $7 D002540
650    _2
$a dítě $7 D002648
650    _2
$a předškolní dítě $7 D002675
650    _2
$a konektom $x metody $7 D063132
650    _2
$a databáze faktografické $7 D016208
650    _2
$a elektrokortikografie $x metody $7 D000069280
650    _2
$a epilepsie $x diagnostické zobrazování $x patofyziologie $7 D004827
650    _2
$a evokované potenciály $x fyziologie $7 D005071
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a nervové dráhy $x diagnostické zobrazování $7 D009434
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Deman, Pierre $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Tuyisenge, Viateur $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Jedynak, Maciej $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Hugues, Etienne $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Rudrauf, David $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Bhattacharjee, Manik $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Tadel, François $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Chanteloup-Foret, Blandine $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Saubat, Carole $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Reyes Mejia, Gina Catalina $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
700    1_
$a Adam, Claude $u Epilepsy Unit, Dept of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France.
700    1_
$a Nica, Anca $u Neurology Department, CHU, Rennes, France.
700    1_
$a Pail, Martin $u Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic. $7 xx0264305
700    1_
$a Dubeau, François $u Montreal Neurological Institute and Hospital, Montreal, Canada.
700    1_
$a Rheims, Sylvain $u Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France.
700    1_
$a Trébuchon, Agnès $u Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France.
700    1_
$a Wang, Haixiang $u Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China.
700    1_
$a Liu, Sinclair $u Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China.
700    1_
$a Blauwblomme, Thomas $u Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France.
700    1_
$a Garcés, Mercedes $u Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
700    1_
$a De Palma, Luca $u Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy.
700    1_
$a Valentin, Antonio $u Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK.
700    1_
$a Metsähonkala, Eeva-Liisa $u Epilepsy Unit, Hospital for Children and Adolescents, Helsinki, Finland.
700    1_
$a Petrescu, Ana Maria $u Neurophysiology and Epilepsy Unit, Bicêtre Hospital, France.
700    1_
$a Landré, Elizabeth $u Department of Neurosurgery, Sainte-Anne Hospital, Paris, France.
700    1_
$a Szurhaj, William $u Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France.
700    1_
$a Hirsch, Edouard $u University Hospital, Department of Neurology, Strasbourg, France.
700    1_
$a Valton, Luc $u University Hospital, Department of Neurology, Toulouse, France.
700    1_
$a Rocamora, Rodrigo $u Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain.
700    1_
$a Schulze-Bonhage, Andreas $u Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
700    1_
$a Mindruta, Ioana $u Neurology Department, University Emergency Hospital, Bucharest, Romania.
700    1_
$a Francione, Stefano $u Epilepsy Surgery Center Niguarda Hospital, Milan, Italy.
700    1_
$a Maillard, Louis $u Centre Hospitalier Universitaire de Nancy, Nancy, France.
700    1_
$a Taussig, Delphine $u Service de neurochirurgie pédiatrique, Fondation Rothschild, Paris, France.
700    1_
$a Kahane, Philippe $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France; CHU Grenoble Alpes, Neurology Department, Grenoble, France.
700    1_
$a David, Olivier $u Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France. Electronic address: Olivier.David@inserm.fr.
773    0_
$w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 181, č. - (2018), s. 414-429
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30025851 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20210924104803 $b ABA008
999    __
$a ok $b bmc $g 1391840 $s 1050835
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 181 $c - $d 414-429 $e 20180717 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...