Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site

P. Kokkonen, D. Bednar, V. Dockalova, Z. Prokop, J. Damborsky,

. 2018 ; 293 (29) : 11505-11512. [pub] 20180601

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19012635

Haloalkane dehalogenases catalyze the hydrolysis of halogen-carbon bonds in organic halogenated compounds and as such are of great utility as biocatalysts. The crystal structures of the haloalkane dehalogenase DhlA from the bacterium from Xanthobacter autotrophicus GJ10, specifically adapted for the conversion of the small 1,2-dichloroethane (DCE) molecule, display the smallest catalytic site (110 Å3) within this enzyme family. However, during a substrate-specificity screening, we noted that DhlA can catalyze the conversion of far bulkier substrates, such as the 4-(bromomethyl)-6,7-dimethoxy-coumarin (220 Å3). This large substrate cannot bind to DhlA without conformational alterations. These conformational changes have been previously inferred from kinetic analysis, but their structural basis has not been understood. Using molecular dynamic simulations, we demonstrate here the intrinsic flexibility of part of the cap domain that allows DhlA to accommodate bulky substrates. The simulations displayed two routes for transport of substrates to the active site, one of which requires the conformational change and is likely the route for bulky substrates. These results provide insights into the structure-dynamics function relationships in enzymes with deeply buried active sites. Moreover, understanding the structural basis for the molecular adaptation of DhlA to 1,2-dichloroethane introduced into the biosphere during the industrial revolution provides a valuable lesson in enzyme design by nature.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19012635
003      
CZ-PrNML
005      
20190412124223.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.RA117.000328 $2 doi
035    __
$a (PubMed)29858243
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kokkonen, Piia $u From the Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic and. International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
245    10
$a Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site / $c P. Kokkonen, D. Bednar, V. Dockalova, Z. Prokop, J. Damborsky,
520    9_
$a Haloalkane dehalogenases catalyze the hydrolysis of halogen-carbon bonds in organic halogenated compounds and as such are of great utility as biocatalysts. The crystal structures of the haloalkane dehalogenase DhlA from the bacterium from Xanthobacter autotrophicus GJ10, specifically adapted for the conversion of the small 1,2-dichloroethane (DCE) molecule, display the smallest catalytic site (110 Å3) within this enzyme family. However, during a substrate-specificity screening, we noted that DhlA can catalyze the conversion of far bulkier substrates, such as the 4-(bromomethyl)-6,7-dimethoxy-coumarin (220 Å3). This large substrate cannot bind to DhlA without conformational alterations. These conformational changes have been previously inferred from kinetic analysis, but their structural basis has not been understood. Using molecular dynamic simulations, we demonstrate here the intrinsic flexibility of part of the cap domain that allows DhlA to accommodate bulky substrates. The simulations displayed two routes for transport of substrates to the active site, one of which requires the conformational change and is likely the route for bulky substrates. These results provide insights into the structure-dynamics function relationships in enzymes with deeply buried active sites. Moreover, understanding the structural basis for the molecular adaptation of DhlA to 1,2-dichloroethane introduced into the biosphere during the industrial revolution provides a valuable lesson in enzyme design by nature.
650    _2
$a katalytická doména $7 D020134
650    _2
$a kumariny $x chemie $x metabolismus $7 D003374
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a ethylendichloridy $x metabolismus $7 D005025
650    _2
$a halogenace $7 D054879
650    _2
$a hydrolasy $x chemie $x metabolismus $7 D006867
650    _2
$a kinetika $7 D007700
650    _2
$a metylace $7 D008745
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a konformace proteinů $7 D011487
650    _2
$a substrátová specifita $7 D013379
650    _2
$a Xanthobacter $x chemie $x enzymologie $x metabolismus $7 D020584
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Bednar, David $u From the Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic and. International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
700    1_
$a Dockalova, Veronika $u From the Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic and. International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
700    1_
$a Prokop, Zbynek $u From the Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic and zbynek@chemi.muni.cz. International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
700    1_
$a Damborsky, Jiri $u From the Loschmidt Laboratories, Department of Experimental Biology, Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic and jiri@chemi.muni.cz. International Centre for Clinical Research, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 293, č. 29 (2018), s. 11505-11512
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29858243 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190412124241 $b ABA008
999    __
$a ok $b bmc $g 1391945 $s 1050940
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 293 $c 29 $d 11505-11512 $e 20180601 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...