-
Something wrong with this record ?
Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures
V. Kouba, R. Darmal, D. Vejmelkova, P. Jenicek, J. Bartacek,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29030939
DOI
10.1002/btpr.2570
Knihovny.cz E-resources
- MeSH
- Ammonium Compounds chemistry MeSH
- Anaerobiosis genetics MeSH
- Bacteria genetics growth & development metabolism MeSH
- Biofilms growth & development MeSH
- Bioreactors MeSH
- Water Purification methods MeSH
- Denitrification genetics MeSH
- Nitrogen metabolism MeSH
- In Situ Hybridization, Fluorescence MeSH
- Cold Temperature MeSH
- Waste Disposal, Fluid methods MeSH
- Oxidation-Reduction MeSH
- Cold-Shock Response genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10-15°C) is crucial for sustaining energy-efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5-19.5°C was 0.005-0.015 kg-N kg-VSS-1 day-1 . Cold shocks increased the activity of Anammox at 10°C to 0.054 kg-N kg-VSS-1 day-1 after the third shock, which is similar to the highest activities obtained for cold-enriched or adapted Anammox reported in the literature (0.080 kg-N kg-VSS-1 day-1 ). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277-281, 2018.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013055
- 003
- CZ-PrNML
- 005
- 20251007132405.0
- 007
- ta
- 008
- 190405s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/btpr.2570 $2 doi
- 035 __
- $a (PubMed)29030939
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kouba, Vojtěch $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic. $7 xx0336414
- 245 10
- $a Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures / $c V. Kouba, R. Darmal, D. Vejmelkova, P. Jenicek, J. Bartacek,
- 520 9_
- $a The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10-15°C) is crucial for sustaining energy-efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5-19.5°C was 0.005-0.015 kg-N kg-VSS-1 day-1 . Cold shocks increased the activity of Anammox at 10°C to 0.054 kg-N kg-VSS-1 day-1 after the third shock, which is similar to the highest activities obtained for cold-enriched or adapted Anammox reported in the literature (0.080 kg-N kg-VSS-1 day-1 ). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277-281, 2018.
- 650 _2
- $a amoniové sloučeniny $x chemie $7 D064751
- 650 _2
- $a anaerobióza $x genetika $7 D000693
- 650 _2
- $a Bacteria $x genetika $x růst a vývoj $x metabolismus $7 D001419
- 650 _2
- $a biofilmy $x růst a vývoj $7 D018441
- 650 _2
- $a bioreaktory $7 D019149
- 650 _2
- $a nízká teplota $7 D003080
- 650 _2
- $a reakce na chladový šok $x genetika $7 D058639
- 650 _2
- $a denitrifikace $x genetika $7 D058440
- 650 _2
- $a hybridizace in situ fluorescenční $7 D017404
- 650 _2
- $a dusík $x metabolismus $7 D009584
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a odpad tekutý - odstraňování $x metody $7 D014865
- 650 _2
- $a čištění vody $x metody $7 D018508
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Darmal, R $u Université Catholique de Lille, 60 Boulevard Vauban, Lille, 59800, France.
- 700 1_
- $a Vejmelkova, D $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
- 700 1_
- $a Jenicek, P $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
- 700 1_
- $a Bartacek, J $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
- 773 0_
- $w MED00000800 $t Biotechnology progress $x 1520-6033 $g Roč. 34, č. 1 (2018), s. 277-281
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29030939 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20251007132354 $b ABA008
- 999 __
- $a ok $b bmc $g 1392365 $s 1051360
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 34 $c 1 $d 277-281 $e 20171103 $i 1520-6033 $m Biotechnology progress $n Biotechnol Prog $x MED00000800
- LZP __
- $a Pubmed-20190405