Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures

V. Kouba, R. Darmal, D. Vejmelkova, P. Jenicek, J. Bartacek,

. 2018 ; 34 (1) : 277-281. [pub] 20171103

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19013055

The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10-15°C) is crucial for sustaining energy-efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5-19.5°C was 0.005-0.015 kg-N kg-VSS-1 day-1 . Cold shocks increased the activity of Anammox at 10°C to 0.054 kg-N kg-VSS-1 day-1 after the third shock, which is similar to the highest activities obtained for cold-enriched or adapted Anammox reported in the literature (0.080 kg-N kg-VSS-1 day-1 ). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277-281, 2018.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013055
003      
CZ-PrNML
005      
20251007132405.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/btpr.2570 $2 doi
035    __
$a (PubMed)29030939
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kouba, Vojtěch $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic. $7 xx0336414
245    10
$a Cold shocks of Anammox biofilm stimulate nitrogen removal at low temperatures / $c V. Kouba, R. Darmal, D. Vejmelkova, P. Jenicek, J. Bartacek,
520    9_
$a The adaptation of Anammox (ANaerobic AMMonium OXidation) to low temperatures (10-15°C) is crucial for sustaining energy-efficient nitrogen removal from the mainstream of municipal wastewater. But, current adaptation methods take months or even years. To speed up the adaption of Anammox to low temperatures, this study describes a new approach: exposing Anammox microorganisms to an abrupt temporary reduction of temperature, i.e., cold shock. Anammox biomass in a moving bed biofilm reactor was subjected to three consecutive cold shocks (reduction from 24 ± 2 to 5.0 ± 0.2°C), each taking eight hours. Before the cold shocks, Anammox activity determined in ex situ tests using the temperature range of 12.5-19.5°C was 0.005-0.015 kg-N kg-VSS-1 day-1 . Cold shocks increased the activity of Anammox at 10°C to 0.054 kg-N kg-VSS-1 day-1 after the third shock, which is similar to the highest activities obtained for cold-enriched or adapted Anammox reported in the literature (0.080 kg-N kg-VSS-1 day-1 ). Fluorescence in situ hybridization analysis showed that Ca. Brocadia fulgida was the dominant species. Thus, cold shocks are an intriguing new strategy for the adaptation of Anammox to low temperature. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:277-281, 2018.
650    _2
$a amoniové sloučeniny $x chemie $7 D064751
650    _2
$a anaerobióza $x genetika $7 D000693
650    _2
$a Bacteria $x genetika $x růst a vývoj $x metabolismus $7 D001419
650    _2
$a biofilmy $x růst a vývoj $7 D018441
650    _2
$a bioreaktory $7 D019149
650    _2
$a nízká teplota $7 D003080
650    _2
$a reakce na chladový šok $x genetika $7 D058639
650    _2
$a denitrifikace $x genetika $7 D058440
650    _2
$a hybridizace in situ fluorescenční $7 D017404
650    _2
$a dusík $x metabolismus $7 D009584
650    _2
$a oxidace-redukce $7 D010084
650    _2
$a odpad tekutý - odstraňování $x metody $7 D014865
650    _2
$a čištění vody $x metody $7 D018508
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Darmal, R $u Université Catholique de Lille, 60 Boulevard Vauban, Lille, 59800, France.
700    1_
$a Vejmelkova, D $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
700    1_
$a Jenicek, P $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
700    1_
$a Bartacek, J $u Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 166 28, Czech Republic.
773    0_
$w MED00000800 $t Biotechnology progress $x 1520-6033 $g Roč. 34, č. 1 (2018), s. 277-281
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29030939 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20251007132354 $b ABA008
999    __
$a ok $b bmc $g 1392365 $s 1051360
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 34 $c 1 $d 277-281 $e 20171103 $i 1520-6033 $m Biotechnology progress $n Biotechnol Prog $x MED00000800
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...