-
Je něco špatně v tomto záznamu ?
3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution
A. Dlasková, H. Engstová, T. Špaček, A. Kahancová, V. Pavluch, K. Smolková, J. Špačková, M. Bartoš, LP. Hlavatá, P. Ježek,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- beta-buňky cytologie metabolismus MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny metabolismus MeSH
- fluorescenční mikroskopie přístrojové vybavení MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- mitochondriální DNA chemie metabolismus MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- potkani Wistar MeSH
- zobrazování trojrozměrné metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000765
- 003
- CZ-PrNML
- 005
- 20190114094150.0
- 007
- ta
- 008
- 190107s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2018.04.013 $2 doi
- 035 __
- $a (PubMed)29727614
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 245 10
- $a 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution / $c A. Dlasková, H. Engstová, T. Špaček, A. Kahancová, V. Pavluch, K. Smolková, J. Špačková, M. Bartoš, LP. Hlavatá, P. Ježek,
- 520 9_
- $a 3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a mitochondriální DNA $x chemie $x metabolismus $7 D004272
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a buňky Hep G2 $7 D056945
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a beta-buňky $x cytologie $x metabolismus $7 D050417
- 650 _2
- $a fluorescenční mikroskopie $x přístrojové vybavení $7 D008856
- 650 _2
- $a mitochondriální membrány $x metabolismus $7 D051336
- 650 _2
- $a mitochondriální proteiny $x metabolismus $7 D024101
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani Wistar $7 D017208
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Kahancová, Anežka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Pavluch, Vojtěch $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Bartoš, Martin $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic.
- 700 1_
- $a Hlavatá, Lydie Plecitá $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: jezek@biomed.cas.cz.
- 773 0_
- $w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 0005-2728 $g Roč. 1859, č. 9 (2018), s. 829-844
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29727614 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20190114094359 $b ABA008
- 999 __
- $a ok $b bmc $g 1364777 $s 1038888
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 1859 $c 9 $d 829-844 $e 20180501 $i 0005-2728 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
- LZP __
- $a Pubmed-20190107