• Je něco špatně v tomto záznamu ?

3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution

A. Dlasková, H. Engstová, T. Špaček, A. Kahancová, V. Pavluch, K. Smolková, J. Špačková, M. Bartoš, LP. Hlavatá, P. Ježek,

. 2018 ; 1859 (9) : 829-844. [pub] 20180501

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000765

3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000765
003      
CZ-PrNML
005      
20190114094150.0
007      
ta
008      
190107s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2018.04.013 $2 doi
035    __
$a (PubMed)29727614
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Dlasková, Andrea $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
245    10
$a 3D super-resolution microscopy reflects mitochondrial cristae alternations and mtDNA nucleoid size and distribution / $c A. Dlasková, H. Engstová, T. Špaček, A. Kahancová, V. Pavluch, K. Smolková, J. Špačková, M. Bartoš, LP. Hlavatá, P. Ježek,
520    9_
$a 3D super-resolution microscopy based on the direct stochastic optical reconstruction microscopy (dSTORM) with primary Alexa-Fluor-647-conjugated antibodies is a powerful method for accessing changes of objects that could be normally resolved only by electron microscopy. Despite the fact that mitochondrial cristae yet to become resolved, we have indicated changes in cristae width and/or morphology by dSTORM of ATP-synthase F1 subunit α (F1α). Obtained 3D images were analyzed with the help of Ripley's K-function modeling spatial patterns or transferring them into distance distribution function. Resulting histograms of distances frequency distribution provide most frequent distances (MFD) between the localized single antibody molecules. In fasting state of model pancreatic β-cells, INS-1E, MFD between F1α were ~80 nm at 0 and 3 mM glucose, whereas decreased to 61 nm and 57 nm upon glucose-stimulated insulin secretion (GSIS) at 11 mM and 20 mM glucose, respectively. Shorter F1α interdistances reflected cristae width decrease upon GSIS, since such repositioning of F1α correlated to average 20 nm and 15 nm cristae width at 0 and 3 mM glucose, and 9 nm or 8 nm after higher glucose simulating GSIS (11, 20 mM glucose, respectively). Also, submitochondrial entities such as nucleoids of mtDNA were resolved e.g. after bromo-deoxyuridine (BrDU) pretreatment using anti-BrDU dSTORM. MFD in distances distribution histograms reflected an average nucleoid diameter (<100 nm) and average distances between nucleoids (~1000 nm). Double channel PALM/dSTORM with Eos-lactamase-β plus anti-TFAM dSTORM confirmed the latter average inter-nucleoid distance. In conclusion, 3D single molecule (dSTORM) microscopy is a reasonable tool for studying mitochondrion.
650    _2
$a zvířata $7 D000818
650    _2
$a kultivované buňky $7 D002478
650    _2
$a mitochondriální DNA $x chemie $x metabolismus $7 D004272
650    _2
$a DNA vazebné proteiny $x metabolismus $7 D004268
650    _2
$a buňky Hep G2 $7 D056945
650    _2
$a lidé $7 D006801
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a beta-buňky $x cytologie $x metabolismus $7 D050417
650    _2
$a fluorescenční mikroskopie $x přístrojové vybavení $7 D008856
650    _2
$a mitochondriální membrány $x metabolismus $7 D051336
650    _2
$a mitochondriální proteiny $x metabolismus $7 D024101
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Engstová, Hana $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Špaček, Tomáš $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Kahancová, Anežka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Pavluch, Vojtěch $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Smolková, Katarína $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Špačková, Jitka $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Bartoš, Martin $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Alef Ltd, Prague, Czech Republic.
700    1_
$a Hlavatá, Lydie Plecitá $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
700    1_
$a Ježek, Petr $u Department of Mitochondrial Physiology, No. 75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. Electronic address: jezek@biomed.cas.cz.
773    0_
$w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 0005-2728 $g Roč. 1859, č. 9 (2018), s. 829-844
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29727614 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190114094359 $b ABA008
999    __
$a ok $b bmc $g 1364777 $s 1038888
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 1859 $c 9 $d 829-844 $e 20180501 $i 0005-2728 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...