• Something wrong with this record ?

Aliphatic Hydrocarbon Enhances Phenanthrene Degradation by Autochthonous Prokaryotic Communities from a Pristine Seawater

EM. Rodrigues, DK. Morais, VS. Pylro, M. Redmile-Gordon, JA. de Oliveira, LFW. Roesch, DE. Cesar, MR. Tótola,

. 2018 ; 75 (3) : 688-700. [pub] 20171003

Language English Country United States

Document type Journal Article

E-resources Online Full text

NLK ProQuest Central from 2000-11-01 to 1 year ago
Medline Complete (EBSCOhost) from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2000-11-01 to 1 year ago

The microbial diversity and functioning around oceanic islands is poorly described, despite its importance for ecosystem homeostasis. Here, we aimed to verify the occurrence of microbe-driven phenanthrene co-oxidation in the seawater surrounding the Trindade Island (Brazil). We also used Next-Generation Sequencing to evaluate the effects of aliphatic and polycyclic aromatic hydrocarbons (PAHs) on these microbial community assemblies. Microcosms containing seawater from the island enriched with either labelled (9-14C) or non-labelled phenanthrene together with hexadecane, weathered oil, fluoranthene or pyrene, and combinations of these compounds were incubated. Biodegradation of phenanthrene-9-14C was negatively affected in the presence of weathered oil and PAHs but increased in the presence of hexadecane. PAH contamination caused shifts in the seawater microbial community-from a highly diverse one dominated by Alphaproteobacteria to less diverse communities dominated by Gammaproteobacteria. Furthermore, the combination of PAHs exerted a compounded negative influence on the microbial community, reducing its diversity and thus functional capacity of the ecosystem. These results advance our understanding of bacterial community dynamics in response to contrasting qualities of hydrocarbon contamination. This understanding is fundamental in the application and monitoring of bioremediation strategies if accidents involving oil spillages occur near Trindade Island and similar ecosystems.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013068
003      
CZ-PrNML
005      
20190416123800.0
007      
ta
008      
190405s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00248-017-1078-8 $2 doi
035    __
$a (PubMed)28971238
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Rodrigues, Edmo Montes $u Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil. edmomontes@yahoo.com.br.
245    10
$a Aliphatic Hydrocarbon Enhances Phenanthrene Degradation by Autochthonous Prokaryotic Communities from a Pristine Seawater / $c EM. Rodrigues, DK. Morais, VS. Pylro, M. Redmile-Gordon, JA. de Oliveira, LFW. Roesch, DE. Cesar, MR. Tótola,
520    9_
$a The microbial diversity and functioning around oceanic islands is poorly described, despite its importance for ecosystem homeostasis. Here, we aimed to verify the occurrence of microbe-driven phenanthrene co-oxidation in the seawater surrounding the Trindade Island (Brazil). We also used Next-Generation Sequencing to evaluate the effects of aliphatic and polycyclic aromatic hydrocarbons (PAHs) on these microbial community assemblies. Microcosms containing seawater from the island enriched with either labelled (9-14C) or non-labelled phenanthrene together with hexadecane, weathered oil, fluoranthene or pyrene, and combinations of these compounds were incubated. Biodegradation of phenanthrene-9-14C was negatively affected in the presence of weathered oil and PAHs but increased in the presence of hexadecane. PAH contamination caused shifts in the seawater microbial community-from a highly diverse one dominated by Alphaproteobacteria to less diverse communities dominated by Gammaproteobacteria. Furthermore, the combination of PAHs exerted a compounded negative influence on the microbial community, reducing its diversity and thus functional capacity of the ecosystem. These results advance our understanding of bacterial community dynamics in response to contrasting qualities of hydrocarbon contamination. This understanding is fundamental in the application and monitoring of bioremediation strategies if accidents involving oil spillages occur near Trindade Island and similar ecosystems.
650    _2
$a alkany $7 D000473
650    _2
$a Alphaproteobacteria $x účinky léků $x metabolismus $7 D020561
650    _2
$a Bacteria $x klasifikace $x účinky léků $x genetika $x metabolismus $7 D001419
650    _2
$a biodegradace $7 D001673
650    _2
$a biodiverzita $7 D044822
650    _2
$a DNA bakterií $x genetika $7 D004269
650    _2
$a ekosystém $7 D017753
650    _2
$a Gammaproteobacteria $x účinky léků $x metabolismus $7 D020563
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a uhlovodíky $x škodlivé účinky $7 D006838
650    _2
$a ostrovy $7 D062312
650    _2
$a metagenomika $7 D056186
650    _2
$a mikrobiální společenstva $x účinky léků $x genetika $x fyziologie $7 D059013
650    _2
$a znečištění ropou $x škodlivé účinky $7 D059392
650    _2
$a fenantreny $x metabolismus $7 D010616
650    _2
$a polycyklické aromatické uhlovodíky $x farmakologie $7 D011084
650    _2
$a pyreny $7 D011721
650    _2
$a RNA ribozomální 16S $x metabolismus $7 D012336
650    _2
$a mořská voda $x mikrobiologie $7 D012623
650    _2
$a látky znečišťující vodu $7 D014873
651    _2
$a Brazílie $7 D001938
655    _2
$a časopisecké články $7 D016428
700    1_
$a Morais, Daniel Kumazawa $u Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Institute of Sciences (CAS), Prague, Czech Republic.
700    1_
$a Pylro, Victor Satler $u Soil Microbiology Laboratory, Department of Soil Science, "Luiz de Queiroz" College of Agriculture, ESALQ/USP, Piracicaba, São Paulo, Brazil.
700    1_
$a Redmile-Gordon, Marc $u Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, UK.
700    1_
$a de Oliveira, Juraci Alves $u Laboratório de Biofísica Ambiental, Departamento de Biologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
700    1_
$a Roesch, Luiz Fernando Wurdig $u Centro para Pesquisa Interdisciplinar em Biotecnologia, CIP-Biotec, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil.
700    1_
$a Cesar, Dionéia Evangelista $u Laboratório de Ecologia e Biologia Molecular de Microrganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
700    1_
$a Tótola, Marcos Rogério $u Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
773    0_
$w MED00003334 $t Microbial ecology $x 1432-184X $g Roč. 75, č. 3 (2018), s. 688-700
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28971238 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190416123826 $b ABA008
999    __
$a ok $b bmc $g 1392378 $s 1051373
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 75 $c 3 $d 688-700 $e 20171003 $i 1432-184X $m Microbial ecology $n Microb Ecol $x MED00003334
LZP    __
$a Pubmed-20190405

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...