Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder

J. Hlavnička, R. Čmejla, T. Tykalová, K. Šonka, E. Růžička, J. Rusz,

. 2017 ; 7 (1) : 12. [pub] 20170202

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19013181

Grantová podpora
NV15-28038A MZ0 CEP - Centrální evidence projektů
NV16-28914A MZ0 CEP - Centrální evidence projektů

For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013181
003      
CZ-PrNML
005      
20201020135717.0
007      
ta
008      
190405s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-017-00047-5 $2 doi
035    __
$a (PubMed)28144037
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hlavnička, Jan $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
245    10
$a Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder / $c J. Hlavnička, R. Čmejla, T. Tykalová, K. Šonka, E. Růžička, J. Rusz,
520    9_
$a For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a poruchy artikulace $x patofyziologie $7 D001184
650    _2
$a biologické markery $7 D015415
650    _2
$a dysfonie $x patofyziologie $7 D055154
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a porucha chování v REM spánku $x patofyziologie $7 D020187
650    _2
$a dýchání $7 D012119
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Čmejla, Roman $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
700    1_
$a Tykalová, Tereza $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
700    1_
$a Šonka, Karel $u Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic.
700    1_
$a Růžička, Evžen $u Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic.
700    1_
$a Rusz, Jan $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic. rusz.mz@gmail.com. Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic. rusz.mz@gmail.com.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 12
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28144037 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20201020135713 $b ABA008
999    __
$a ok $b bmc $g 1392491 $s 1051486
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 7 $c 1 $d 12 $e 20170202 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a NV15-28038A $p MZ0
GRA    __
$a NV16-28914A $p MZ0
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...