-
Je něco špatně v tomto záznamu ?
Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder
J. Hlavnička, R. Čmejla, T. Tykalová, K. Šonka, E. Růžička, J. Rusz,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NV15-28038A
MZ0
CEP - Centrální evidence projektů
NV16-28914A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Plný text - Článek
Zdroj
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- biologické markery MeSH
- dospělí MeSH
- dýchání MeSH
- dysfonie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc diagnóza patofyziologie MeSH
- porucha chování v REM spánku patofyziologie MeSH
- poruchy artikulace patofyziologie MeSH
- rozpoznávání automatizované metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013181
- 003
- CZ-PrNML
- 005
- 20201020135717.0
- 007
- ta
- 008
- 190405s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-017-00047-5 $2 doi
- 035 __
- $a (PubMed)28144037
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hlavnička, Jan $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
- 245 10
- $a Automated analysis of connected speech reveals early biomarkers of Parkinson's disease in patients with rapid eye movement sleep behaviour disorder / $c J. Hlavnička, R. Čmejla, T. Tykalová, K. Šonka, E. Růžička, J. Rusz,
- 520 9_
- $a For generations, the evaluation of speech abnormalities in neurodegenerative disorders such as Parkinson's disease (PD) has been limited to perceptual tests or user-controlled laboratory analysis based upon rather small samples of human vocalizations. Our study introduces a fully automated method that yields significant features related to respiratory deficits, dysphonia, imprecise articulation and dysrhythmia from acoustic microphone data of natural connected speech for predicting early and distinctive patterns of neurodegeneration. We compared speech recordings of 50 subjects with rapid eye movement sleep behaviour disorder (RBD), 30 newly diagnosed, untreated PD patients and 50 healthy controls, and showed that subliminal parkinsonian speech deficits can be reliably captured even in RBD patients, which are at high risk of developing PD or other synucleinopathies. Thus, automated vocal analysis should soon be able to contribute to screening and diagnostic procedures for prodromal parkinsonian neurodegeneration in natural environments.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a poruchy artikulace $x patofyziologie $7 D001184
- 650 _2
- $a biologické markery $7 D015415
- 650 _2
- $a dysfonie $x patofyziologie $7 D055154
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a porucha chování v REM spánku $x patofyziologie $7 D020187
- 650 _2
- $a dýchání $7 D012119
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Čmejla, Roman $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
- 700 1_
- $a Tykalová, Tereza $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic.
- 700 1_
- $a Šonka, Karel $u Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic.
- 700 1_
- $a Růžička, Evžen $u Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic.
- 700 1_
- $a Rusz, Jan $u Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Circuit Theory, Technická 2, 166 27, Prague 6, Czech Republic. rusz.mz@gmail.com. Charles University in Prague, First Faculty of Medicine, Department of Neurology and Centre of Clinical Neuroscience, Kateřinská 30, 120 00, Prague 2, Czech Republic. rusz.mz@gmail.com.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 12
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28144037 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20201020135713 $b ABA008
- 999 __
- $a ok $b bmc $g 1392491 $s 1051486
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 1 $d 12 $e 20170202 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a NV15-28038A $p MZ0
- GRA __
- $a NV16-28914A $p MZ0
- LZP __
- $a Pubmed-20190405