• Je něco špatně v tomto záznamu ?

Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide

M. Zarska, F. Novotny, F. Havel, M. Sramek, A. Babelova, O. Benada, M. Novotny, H. Saran, K. Kuca, K. Musilek, Z. Hvezdova, R. Dzijak, M. Vancurova, K. Krejcikova, B. Gabajova, H. Hanzlikova, L. Kyjacova, J. Bartek, J. Proska, Z. Hodny,

. 2016 ; 27 (10) : 2558-2574. [pub] 20160926

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19013192

Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013192
003      
CZ-PrNML
005      
20250506114952.0
007      
ta
008      
190405s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.bioconjchem.6b00491 $2 doi
035    __
$a (PubMed)27602782
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zarska, Monika $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
245    10
$a Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide / $c M. Zarska, F. Novotny, F. Havel, M. Sramek, A. Babelova, O. Benada, M. Novotny, H. Saran, K. Kuca, K. Musilek, Z. Hvezdova, R. Dzijak, M. Vancurova, K. Krejcikova, B. Gabajova, H. Hanzlikova, L. Kyjacova, J. Bartek, J. Proska, Z. Hodny,
520    9_
$a Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a buněčná membrána $x účinky léků $x metabolismus $7 D002462
650    _2
$a proliferace buněk $x účinky léků $7 D049109
650    _2
$a techniky syntetické chemie $7 D060326
650    _2
$a kultivační média $7 D003470
650    _2
$a stabilita léku $7 D004355
650    _2
$a endocytóza $x účinky léků $x fyziologie $7 D004705
650    12
$a exocytóza $x účinky léků $x fyziologie $7 D005089
650    _2
$a průtoková cytometrie $7 D005434
650    _2
$a zlato $x chemie $x farmakokinetika $7 D006046
650    _2
$a lidé $7 D006801
650    _2
$a lyzozomy $x účinky léků $7 D008247
650    _2
$a konfokální mikroskopie $7 D018613
650    _2
$a mikroskopie elektronová rastrovací $7 D008855
650    _2
$a nanotrubičky $x analýza $x chemie $7 D043942
650    _2
$a polylysin $x chemie $x farmakokinetika $7 D011107
650    _2
$a proteoglykany $x chemie $x metabolismus $7 D011509
650    _2
$a kvartérní amoniové sloučeniny $x chemická syntéza $x chemie $7 D000644
650    _2
$a sulfhydrylové sloučeniny $x chemie $7 D013438
655    _2
$a časopisecké články $7 D016428
700    1_
$a Novotny, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
700    1_
$a Havel, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
700    1_
$a Sramek, Michal $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Babelova, Andrea $u Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute BMC, Slovak Academy of Sciences , 945 05 Bratislava, Slovakia.
700    1_
$a Benada, Oldrich $u Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Novotny, Michal $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
700    1_
$a Saran, Hilal $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic.
700    1_
$a Kuca, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
700    1_
$a Musilek, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
700    1_
$a Hvezdova, Zuzana $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Dzijak, Rastislav $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Vancurova, Marketa $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Krejcikova, Katerina $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Gabajova, Blanka $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Hanzlikova, Hana $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Kyjacova, Lenka $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
700    1_
$a Bártek, Jiří, $d 1953- $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Genome Integrity Unit, Danish Cancer Society Research Center , DK-2100 Copenhagen, Denmark. Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institute , 17121 Solna, Sweden. $7 xx0046271
700    1_
$a Proska, Jan $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
700    1_
$a Hodny, Zdenek $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
773    0_
$w MED00006454 $t Bioconjugate chemistry $x 1520-4812 $g Roč. 27, č. 10 (2016), s. 2558-2574
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27602782 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20250506114951 $b ABA008
999    __
$a ok $b bmc $g 1392502 $s 1051497
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 27 $c 10 $d 2558-2574 $e 20160926 $i 1520-4812 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...