-
Je něco špatně v tomto záznamu ?
Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide
M. Zarska, F. Novotny, F. Havel, M. Sramek, A. Babelova, O. Benada, M. Novotny, H. Saran, K. Kuca, K. Musilek, Z. Hvezdova, R. Dzijak, M. Vancurova, K. Krejcikova, B. Gabajova, H. Hanzlikova, L. Kyjacova, J. Bartek, J. Proska, Z. Hodny,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- buněčná membrána účinky léků metabolismus MeSH
- endocytóza účinky léků fyziologie MeSH
- exocytóza * účinky léků fyziologie MeSH
- konfokální mikroskopie MeSH
- kultivační média MeSH
- kvartérní amoniové sloučeniny chemická syntéza chemie MeSH
- lidé MeSH
- lyzozomy účinky léků MeSH
- mikroskopie elektronová rastrovací MeSH
- nádorové buněčné linie MeSH
- nanotrubičky analýza chemie MeSH
- polylysin chemie farmakokinetika MeSH
- proliferace buněk účinky léků MeSH
- proteoglykany chemie metabolismus MeSH
- průtoková cytometrie MeSH
- stabilita léku MeSH
- sulfhydrylové sloučeniny chemie MeSH
- techniky syntetické chemie MeSH
- zlato chemie farmakokinetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013192
- 003
- CZ-PrNML
- 005
- 20250506114952.0
- 007
- ta
- 008
- 190405s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acs.bioconjchem.6b00491 $2 doi
- 035 __
- $a (PubMed)27602782
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zarska, Monika $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 245 10
- $a Two-Step Mechanism of Cellular Uptake of Cationic Gold Nanoparticles Modified by (16-Mercaptohexadecyl)trimethylammonium Bromide / $c M. Zarska, F. Novotny, F. Havel, M. Sramek, A. Babelova, O. Benada, M. Novotny, H. Saran, K. Kuca, K. Musilek, Z. Hvezdova, R. Dzijak, M. Vancurova, K. Krejcikova, B. Gabajova, H. Hanzlikova, L. Kyjacova, J. Bartek, J. Proska, Z. Hodny,
- 520 9_
- $a Cationic colloidal gold nanorods (GNRs) have a great potential as a theranostic tool for diverse medical applications. GNRs' properties such as cellular internalization and stability are determined by physicochemical characteristics of their surface coating. GNRs modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB), MTABGNRs, show excellent cellular uptake. Despite their promise for biomedicine, however, relatively little is known about the cellular pathways that facilitate the uptake of GNRs, their subcellular fate and intracellular persistence. Here we studied the mechanism of cellular internalization and long-term fate of GNRs coated with MTAB, for which the synthesis was optimized to give higher yield, in various human cell types including normal diploid versus cancerous, and dividing versus nondividing (senescent) cells. The process of MTABGNRs internalization into their final destination in lysosomes proceeds in two steps: (1) fast passive adhesion to cell membrane mediated by sulfated proteoglycans occurring within minutes and (2) slower active transmembrane and intracellular transport of individual nanorods via clathrin-mediated endocytosis and of aggregated nanorods via macropinocytosis. The expression of sulfated proteoglycans was the major factor determining the extent of uptake by the respective cell types. Upon uptake into proliferating cells, MTABGNRs were diluted equally and relatively rapidly into daughter cells; however, in nondividing/senescent cells the loss of MTABGNRs was gradual and very modest, attributable mainly to exocytosis. Exocytosed MTABGNRs can again be internalized. These findings broaden our knowledge about cellular uptake of gold nanorods, a crucial prerequisite for future successful engineering of nanoparticles for biomedical applications such as photothermal cancer therapy or elimination of senescent cells as part of the emerging rejuvenation approach.
- 650 _2
- $a nádorové buněčné linie $7 D045744
- 650 _2
- $a buněčná membrána $x účinky léků $x metabolismus $7 D002462
- 650 _2
- $a proliferace buněk $x účinky léků $7 D049109
- 650 _2
- $a techniky syntetické chemie $7 D060326
- 650 _2
- $a kultivační média $7 D003470
- 650 _2
- $a stabilita léku $7 D004355
- 650 _2
- $a endocytóza $x účinky léků $x fyziologie $7 D004705
- 650 12
- $a exocytóza $x účinky léků $x fyziologie $7 D005089
- 650 _2
- $a průtoková cytometrie $7 D005434
- 650 _2
- $a zlato $x chemie $x farmakokinetika $7 D006046
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lyzozomy $x účinky léků $7 D008247
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a mikroskopie elektronová rastrovací $7 D008855
- 650 _2
- $a nanotrubičky $x analýza $x chemie $7 D043942
- 650 _2
- $a polylysin $x chemie $x farmakokinetika $7 D011107
- 650 _2
- $a proteoglykany $x chemie $x metabolismus $7 D011509
- 650 _2
- $a kvartérní amoniové sloučeniny $x chemická syntéza $x chemie $7 D000644
- 650 _2
- $a sulfhydrylové sloučeniny $x chemie $7 D013438
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Novotny, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
- 700 1_
- $a Havel, Filip $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
- 700 1_
- $a Sramek, Michal $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Babelova, Andrea $u Laboratory of Mutagenesis and Carcinogenesis, Cancer Research Institute BMC, Slovak Academy of Sciences , 945 05 Bratislava, Slovakia.
- 700 1_
- $a Benada, Oldrich $u Laboratory of Molecular Structure Characterization, Institute of Microbiology of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Novotny, Michal $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
- 700 1_
- $a Saran, Hilal $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic.
- 700 1_
- $a Kuca, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
- 700 1_
- $a Musilek, Kamil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove , 500 03 Hradec Kralove, Czech Republic. Biomedical Research Center, University Hospital , CZ-500 05 Hradec Kralove, Czech Republic.
- 700 1_
- $a Hvezdova, Zuzana $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Dzijak, Rastislav $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Vancurova, Marketa $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Krejcikova, Katerina $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Gabajova, Blanka $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Hanzlikova, Hana $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Kyjacova, Lenka $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 700 1_
- $a Bártek, Jiří, $d 1953- $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Genome Integrity Unit, Danish Cancer Society Research Center , DK-2100 Copenhagen, Denmark. Department of Medical Biochemistry and Biophysics, Science For Life Laboratory, Division of Translational Medicine and Chemical Biology, Karolinska Institute , 17121 Solna, Sweden. $7 xx0046271
- 700 1_
- $a Proska, Jan $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic. Department of Physical Electronics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague , CZ-115 19 Prague 1, Czech Republic.
- 700 1_
- $a Hodny, Zdenek $u Department of Genome Integrity, Institute of Molecular Genetics of the CAS, v.v.i. , CZ-142 20 Prague 4, Czech Republic.
- 773 0_
- $w MED00006454 $t Bioconjugate chemistry $x 1520-4812 $g Roč. 27, č. 10 (2016), s. 2558-2574
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27602782 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20250506114951 $b ABA008
- 999 __
- $a ok $b bmc $g 1392502 $s 1051497
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 27 $c 10 $d 2558-2574 $e 20160926 $i 1520-4812 $m Bioconjugate chemistry $n Bioconjug Chem $x MED00006454
- LZP __
- $a Pubmed-20190405