Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery

Mohammad Saber Iraji

. 2019 ; 17 (1) : 68-75.

Language English Country Czech Republic

Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc19019279
003      
CZ-PrNML
005      
20200513115935.0
007      
ta
008      
190601s2019 xr da f 000 0|eng||
009      
AR
024    7_
$a 10.32725/jab.2018.007 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Iraji, Mohammad Saber $u Payame Noor University, Faculty of Engineering, Department of Computer Engineering and Information Technology, Tehran, Iran
245    10
$a Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery / $c Mohammad Saber Iraji
504    __
$a Literatura
520    9_
$a Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.
650    12
$a nádory plic $x diagnostické zobrazování $x chirurgie $x patologie $7 D008175
650    _2
$a hrudní chirurgické výkony $x metody $7 D019616
650    _2
$a pooperační komplikace $x mortalita $x prevence a kontrola $7 D011183
650    _2
$a předoperační vyšetření $7 D000068436
650    _2
$a řízené strojové učení $7 D000069553
650    _2
$a deep learning $7 D000077321
650    _2
$a rozpoznávání automatizované $7 D010363
650    _2
$a prognóza $7 D011379
650    _2
$a analýza přežití $7 D016019
650    _2
$a lidé $7 D006801
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 17, č. 1 (2019), s. 68-75 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2019/01/10.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y p $z 0
990    __
$a 20190601070112 $b ABA008
991    __
$a 20200513115932 $b ABA008
999    __
$a ok $b bmc $g 1410861 $s 1059158
BAS    __
$a 3
BMC    __
$a 2019 $b 17 $c 1 $d 68-75 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
LZP    __
$c NLK125 $d 20200113 $a NLK 2019-30/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...