-
Something wrong with this record ?
Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery
Mohammad Saber Iraji
Language English Country Czech Republic
- MeSH
- Survival Analysis MeSH
- Deep Learning MeSH
- Thoracic Surgical Procedures methods MeSH
- Humans MeSH
- Lung Neoplasms * diagnostic imaging surgery pathology MeSH
- Postoperative Complications mortality prevention & control MeSH
- Surgical Clearance MeSH
- Prognosis MeSH
- Supervised Machine Learning MeSH
- Pattern Recognition, Automated MeSH
- Check Tag
- Humans MeSH
Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.
References provided by Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19019279
- 003
- CZ-PrNML
- 005
- 20200513115935.0
- 007
- ta
- 008
- 190601s2019 xr da f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.32725/jab.2018.007 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Iraji, Mohammad Saber $u Payame Noor University, Faculty of Engineering, Department of Computer Engineering and Information Technology, Tehran, Iran
- 245 10
- $a Deep stacked sparse auto-encoders for prediction of post-operative survival expectancy in thoracic lung cancer surgery / $c Mohammad Saber Iraji
- 504 __
- $a Literatura
- 520 9_
- $a Lung cancer is the leading cause of cancer death in men and women. The prognostic value of survival after lung cancer surgery has an important role in decision-making for surgeons and patients. The combination of clinical features and CT scan information for diagnosis, treatment and survival of patients with lung cancer increases the accuracy of prediction using machine learning. Therefore, creating a computer intelligent method with low error and high accuracy to predict survival is an important challenge, and it is beneficial for decreasing mortality from lung cancer, and for planning treatment. In this work, we implemented a deep stacked sparse auto-encoder (DSSAE) approach on a thoracic surgery data set for 470 patients, and our results contributing to deep learning based on 16 features were more precise than other suggested techniques for predicting post-operative survival expectancy in thoracic lung cancer surgery. The proposed method achieved a sensitivity of 94%, specificity of 82.86% and g-mean of 88.25%.
- 650 12
- $a nádory plic $x diagnostické zobrazování $x chirurgie $x patologie $7 D008175
- 650 _2
- $a hrudní chirurgické výkony $x metody $7 D019616
- 650 _2
- $a pooperační komplikace $x mortalita $x prevence a kontrola $7 D011183
- 650 _2
- $a předoperační vyšetření $7 D000068436
- 650 _2
- $a řízené strojové učení $7 D000069553
- 650 _2
- $a deep learning $7 D000077321
- 650 _2
- $a rozpoznávání automatizované $7 D010363
- 650 _2
- $a prognóza $7 D011379
- 650 _2
- $a analýza přežití $7 D016019
- 650 _2
- $a lidé $7 D006801
- 773 0_
- $t Journal of applied biomedicine $x 1214-021X $g Roč. 17, č. 1 (2019), s. 68-75 $w MED00012667
- 856 41
- $u https://jab.zsf.jcu.cz/pdfs/jab/2019/01/10.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b B 2301 $c 1249 $y p $z 0
- 990 __
- $a 20190601070112 $b ABA008
- 991 __
- $a 20200513115932 $b ABA008
- 999 __
- $a ok $b bmc $g 1410861 $s 1059158
- BAS __
- $a 3
- BMC __
- $a 2019 $b 17 $c 1 $d 68-75 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
- LZP __
- $c NLK125 $d 20200113 $a NLK 2019-30/vt