-
Je něco špatně v tomto záznamu ?
Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation
AM. Thomas, P. Manghi, F. Asnicar, E. Pasolli, F. Armanini, M. Zolfo, F. Beghini, S. Manara, N. Karcher, C. Pozzi, S. Gandini, D. Serrano, S. Tarallo, A. Francavilla, G. Gallo, M. Trompetto, G. Ferrero, S. Mizutani, H. Shiroma, S. Shiba, T....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 CA042014
NCI NIH HHS - United States
R01 CA189184
NCI NIH HHS - United States
R01 CA207371
NCI NIH HHS - United States
NLK
ProQuest Central
od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2000-01-01 do Před 1 rokem
- MeSH
- cholin metabolismus MeSH
- databáze genetické MeSH
- druhová specificita MeSH
- kohortové studie MeSH
- kolorektální nádory diagnóza metabolismus mikrobiologie MeSH
- lidé MeSH
- lyasy genetika metabolismus MeSH
- metagenomika * MeSH
- nádorové biomarkery metabolismus MeSH
- střevní mikroflóra MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.
Department CIBIO University of Trento Trento Italy
Department of Colorectal Surgery Clinica S Rita Vercelli Italy
Department of Computer Science University of Turin Turin Italy
Division of Cancer Genomics National Cancer Center Research Institute Tokyo Japan
European Institute of Oncology Milan Italy
Italian Institute for Genomic Medicine Turin Italy
Mucosal Immunology and Microbiota Unit Humanitas Research Hospital Milan Italy
School of Life Science and Technology Tokyo Institute of Technology Tokyo Japan
Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027678
- 003
- CZ-PrNML
- 005
- 20190823111541.0
- 007
- ta
- 008
- 190813s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41591-019-0405-7 $2 doi
- 035 __
- $a (PubMed)30936548
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Thomas, Andrew Maltez $u Department CIBIO, University of Trento, Trento, Italy. Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil. Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil.
- 245 10
- $a Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation / $c AM. Thomas, P. Manghi, F. Asnicar, E. Pasolli, F. Armanini, M. Zolfo, F. Beghini, S. Manara, N. Karcher, C. Pozzi, S. Gandini, D. Serrano, S. Tarallo, A. Francavilla, G. Gallo, M. Trompetto, G. Ferrero, S. Mizutani, H. Shiroma, S. Shiba, T. Shibata, S. Yachida, T. Yamada, J. Wirbel, P. Schrotz-King, CM. Ulrich, H. Brenner, M. Arumugam, P. Bork, G. Zeller, F. Cordero, E. Dias-Neto, JC. Setubal, A. Tett, B. Pardini, M. Rescigno, L. Waldron, A. Naccarati, N. Segata,
- 520 9_
- $a Several studies have investigated links between the gut microbiome and colorectal cancer (CRC), but questions remain about the replicability of biomarkers across cohorts and populations. We performed a meta-analysis of five publicly available datasets and two new cohorts and validated the findings on two additional cohorts, considering in total 969 fecal metagenomes. Unlike microbiome shifts associated with gastrointestinal syndromes, the gut microbiome in CRC showed reproducibly higher richness than controls (P < 0.01), partially due to expansions of species typically derived from the oral cavity. Meta-analysis of the microbiome functional potential identified gluconeogenesis and the putrefaction and fermentation pathways as being associated with CRC, whereas the stachyose and starch degradation pathways were associated with controls. Predictive microbiome signatures for CRC trained on multiple datasets showed consistently high accuracy in datasets not considered for model training and independent validation cohorts (average area under the curve, 0.84). Pooled analysis of raw metagenomes showed that the choline trimethylamine-lyase gene was overabundant in CRC (P = 0.001), identifying a relationship between microbiome choline metabolism and CRC. The combined analysis of heterogeneous CRC cohorts thus identified reproducible microbiome biomarkers and accurate disease-predictive models that can form the basis for clinical prognostic tests and hypothesis-driven mechanistic studies.
- 650 _2
- $a nádorové biomarkery $x metabolismus $7 D014408
- 650 _2
- $a cholin $x metabolismus $7 D002794
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a kolorektální nádory $x diagnóza $x metabolismus $x mikrobiologie $7 D015179
- 650 _2
- $a databáze genetické $7 D030541
- 650 _2
- $a střevní mikroflóra $7 D000069196
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lyasy $x genetika $x metabolismus $7 D008190
- 650 12
- $a metagenomika $7 D056186
- 650 _2
- $a druhová specificita $7 D013045
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Manghi, Paolo $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Asnicar, Francesco $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Pasolli, Edoardo $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Armanini, Federica $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Zolfo, Moreno $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Beghini, Francesco $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Manara, Serena $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Karcher, Nicolai $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Pozzi, Chiara $u European Institute of Oncology, Milan, Italy.
- 700 1_
- $a Gandini, Sara $u European Institute of Oncology, Milan, Italy.
- 700 1_
- $a Serrano, Davide $u European Institute of Oncology, Milan, Italy.
- 700 1_
- $a Tarallo, Sonia $u Italian Institute for Genomic Medicine, Turin, Italy.
- 700 1_
- $a Francavilla, Antonio $u Italian Institute for Genomic Medicine, Turin, Italy.
- 700 1_
- $a Gallo, Gaetano $u Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy. Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy.
- 700 1_
- $a Trompetto, Mario $u Department of Colorectal Surgery, Clinica S. Rita, Vercelli, Italy.
- 700 1_
- $a Ferrero, Giulio $u Department of Computer Science, University of Turin, Turin, Italy.
- 700 1_
- $a Mizutani, Sayaka $u School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan. Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
- 700 1_
- $a Shiroma, Hirotsugu $u School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan.
- 700 1_
- $a Shiba, Satoshi $u Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- 700 1_
- $a Shibata, Tatsuhiro $u Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- 700 1_
- $a Yachida, Shinichi $u Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan. Department of Cancer Genome Informatics, Osaka University, Osaka, Japan.
- 700 1_
- $a Yamada, Takuji $u School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan. PRESTO, Japan Science and Technology Agency, Saitama, Japan.
- 700 1_
- $a Wirbel, Jakob $u Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- 700 1_
- $a Schrotz-King, Petra $u Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.
- 700 1_
- $a Ulrich, Cornelia M $u Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA.
- 700 1_
- $a Brenner, Hermann $u Division of Preventive Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany. German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
- 700 1_
- $a Arumugam, Manimozhiyan $u Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Faculty of Healthy Sciences, University of Southern Denmark, Odense, Denmark.
- 700 1_
- $a Bork, Peer $u Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. Molecular Medicine Partnership Unit, Heidelberg, Germany. Max Delbrück Centre for Molecular Medicine, Berlin, Germany. Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
- 700 1_
- $a Zeller, Georg $u Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- 700 1_
- $a Cordero, Francesca $u Department of Computer Science, University of Turin, Turin, Italy.
- 700 1_
- $a Dias-Neto, Emmanuel $u Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo, Brazil. Laboratory of Neurosciences, Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
- 700 1_
- $a Setubal, João Carlos $u Biochemistry Department, Chemistry Institute, University of São Paulo, São Paulo, Brazil. Biocomplexity Institute of Virginia Tech, Blacksburg, VA, USA.
- 700 1_
- $a Tett, Adrian $u Department CIBIO, University of Trento, Trento, Italy.
- 700 1_
- $a Pardini, Barbara $u Italian Institute for Genomic Medicine, Turin, Italy. Department of Medical Sciences, University of Turin, Turin, Italy.
- 700 1_
- $a Rescigno, Maria $u Mucosal Immunology and Microbiota Unit, Humanitas Research Hospital, Milan, Italy.
- 700 1_
- $a Waldron, Levi $u Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA. Institute for Implementation Science in Population Health, City University of New York, New York, NY, USA.
- 700 1_
- $a Naccarati, Alessio $u Italian Institute for Genomic Medicine, Turin, Italy. Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Prague, Czech Republic.
- 700 1_
- $a Segata, Nicola $u Department CIBIO, University of Trento, Trento, Italy. nicola.segata@unitn.it.
- 773 0_
- $w MED00003459 $t Nature medicine $x 1546-170X $g Roč. 25, č. 4 (2019), s. 667-678
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30936548 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190823111755 $b ABA008
- 999 __
- $a ok $b bmc $g 1432827 $s 1066138
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 25 $c 4 $d 667-678 $e 20190401 $i 1546-170X $m Nature medicine $n Nat Med $x MED00003459
- GRA __
- $a P30 CA042014 $p NCI NIH HHS $2 United States
- GRA __
- $a R01 CA189184 $p NCI NIH HHS $2 United States
- GRA __
- $a R01 CA207371 $p NCI NIH HHS $2 United States
- LZP __
- $a Pubmed-20190813