• Je něco špatně v tomto záznamu ?

The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies

P. Modlitbová, A. Hlaváček, T. Švestková, P. Pořízka, L. Šimoníková, K. Novotný, J. Kaiser,

. 2019 ; 225 (-) : 723-734. [pub] 20190315

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027691

In this study, radish (Raphanus sativus L.) and common duckweed (Lemna minor L.) were treated with an aqueous dispersion of carboxylated silica-coated photon-upconversion nanoparticles containing rare-earth elements (Y, Yb, and Er). The total concentration of rare earths and their bioaccumulation factors were determined in root, hypocotyl, and leaves of R. sativus after 72 h, and in L. minor fronds after 168 h. In R. sativus, translocation factors were determined as the ratio of rare earths concentration in hypocotyl versus root and in leaves versus hypocotyl. The lengths of the root and hypocotyl in R. sativus, as well as the frond area in L. minor, were monitored as toxicity endpoints. To distinguish rare earth bioaccumulation patterns, two-dimensional maps of elemental distribution in the whole R. sativus plant and L. minor fronds were obtained by laser-induced breakdown spectroscopy with a lateral resolution of 100 μm. Moreover, the bioaccumulation was inspected using a photon-upconversion laser microscanner. The results revealed that the tested nanoparticles became adsorbed onto L. minor fronds and R. sativus roots, as well as transferred from roots through the hypocotyl and into leaves of R. sativus. The bioaccumulation patterns and spatial distribution of rare earths in nanoparticle-treated plants therefore differed from those of the positive control. Overall, carboxylated silica-coated photon-upconversion nanoparticles are stable, can easily translocate from roots to leaves, and are expected to become adsorbed onto the plant surface. They are also significantly toxic to the tested plants at nominal concentrations of 100 and 1000 μg/mL.

000      
00000naa a2200000 a 4500
001      
bmc19027691
003      
CZ-PrNML
005      
20190815105359.0
007      
ta
008      
190813s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.chemosphere.2019.03.074 $2 doi
035    __
$a (PubMed)30903846
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Modlitbová, Pavlína $u Central European Institute of Technology (CEITEC), Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic. Electronic address: Pavlina.Modlitbova@ceitec.vutbr.cz.
245    14
$a The effects of photon-upconversion nanoparticles on the growth of radish and duckweed: Bioaccumulation, imaging, and spectroscopic studies / $c P. Modlitbová, A. Hlaváček, T. Švestková, P. Pořízka, L. Šimoníková, K. Novotný, J. Kaiser,
520    9_
$a In this study, radish (Raphanus sativus L.) and common duckweed (Lemna minor L.) were treated with an aqueous dispersion of carboxylated silica-coated photon-upconversion nanoparticles containing rare-earth elements (Y, Yb, and Er). The total concentration of rare earths and their bioaccumulation factors were determined in root, hypocotyl, and leaves of R. sativus after 72 h, and in L. minor fronds after 168 h. In R. sativus, translocation factors were determined as the ratio of rare earths concentration in hypocotyl versus root and in leaves versus hypocotyl. The lengths of the root and hypocotyl in R. sativus, as well as the frond area in L. minor, were monitored as toxicity endpoints. To distinguish rare earth bioaccumulation patterns, two-dimensional maps of elemental distribution in the whole R. sativus plant and L. minor fronds were obtained by laser-induced breakdown spectroscopy with a lateral resolution of 100 μm. Moreover, the bioaccumulation was inspected using a photon-upconversion laser microscanner. The results revealed that the tested nanoparticles became adsorbed onto L. minor fronds and R. sativus roots, as well as transferred from roots through the hypocotyl and into leaves of R. sativus. The bioaccumulation patterns and spatial distribution of rare earths in nanoparticle-treated plants therefore differed from those of the positive control. Overall, carboxylated silica-coated photon-upconversion nanoparticles are stable, can easily translocate from roots to leaves, and are expected to become adsorbed onto the plant surface. They are also significantly toxic to the tested plants at nominal concentrations of 100 and 1000 μg/mL.
650    _2
$a nanočástice $x chemie $7 D053758
650    _2
$a fotony $7 D017785
650    _2
$a rostlinné extrakty $x chemie $7 D010936
650    _2
$a Raphanus $x účinky léků $7 D031224
650    _2
$a spektrální analýza $x metody $7 D013057
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hlaváček, Antonín $u Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Veveří 967/97, 602 00, Brno, Czech Republic.
700    1_
$a Švestková, Tereza $u Central European Institute of Technology (CEITEC), Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic.
700    1_
$a Pořízka, Pavel $u Central European Institute of Technology (CEITEC), Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic.
700    1_
$a Šimoníková, Lucie $u Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Novotný, Karel $u Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic; Central European Institute of Technology (CEITEC) Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology (CEITEC), Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic.
773    0_
$w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 225, č. - (2019), s. 723-734
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30903846 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190815105627 $b ABA008
999    __
$a ok $b bmc $g 1432840 $s 1066151
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 225 $c - $d 723-734 $e 20190315 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...