• Je něco špatně v tomto záznamu ?

Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment

M. Čertický, M. Čertický, P. Sinčák, G. Magyar, J. Vaščák, F. Cavallo,

. 2019 ; 19 (5) : . [pub] 20190226

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027771

Grantová podpora
APVV-16-0213 Agentúra na Podporu Výskumu a Vývoja
APVV-15-0731 Agentúra na Podporu Výskumu a Vývoja

Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems-mainly the misinterpretation and temporal delay during longer experiments-and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ∼96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027771
003      
CZ-PrNML
005      
20190815114631.0
007      
ta
008      
190813s2019 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/s19050989 $2 doi
035    __
$a (PubMed)30813552
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Čertický, Martin $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. martin.certicky@tuke.sk.
245    10
$a Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment / $c M. Čertický, M. Čertický, P. Sinčák, G. Magyar, J. Vaščák, F. Cavallo,
520    9_
$a Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems-mainly the misinterpretation and temporal delay during longer experiments-and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ∼96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a autonomní nervový systém $x fyziologie $7 D001341
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a galvanická kožní odpověď $x fyziologie $7 D005712
650    _2
$a srdeční frekvence $x fyziologie $7 D006339
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a psychofyziologie $x metody $7 D011603
650    _2
$a videohry $x psychologie $7 D018910
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Čertický, Michal $u Department of Computer Science, Czech Technical University in Prague, 166 36 Prague, Czech Republic. certicky@gmail.com.
700    1_
$a Sinčák, Peter $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. peter.sincak@tuke.sk.
700    1_
$a Magyar, Gergely $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. gergely.magyar@tuke.sk.
700    1_
$a Vaščák, Ján $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. jan.vascak@tuke.sk.
700    1_
$a Cavallo, Filippo $u The Biorobotics Institute, Scuola Superiore Sant'Anna, 560 25 Pisa, Italy. filippo.cavallo@santannapisa.it.
773    0_
$w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 19, č. 5 (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30813552 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190815114859 $b ABA008
999    __
$a ok $b bmc $g 1432920 $s 1066231
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 19 $c 5 $e 20190226 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
GRA    __
$a APVV-16-0213 $p Agentúra na Podporu Výskumu a Vývoja
GRA    __
$a APVV-15-0731 $p Agentúra na Podporu Výskumu a Vývoja
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...