-
Je něco špatně v tomto záznamu ?
Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment
M. Čertický, M. Čertický, P. Sinčák, G. Magyar, J. Vaščák, F. Cavallo,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
APVV-16-0213
Agentúra na Podporu Výskumu a Vývoja
APVV-15-0731
Agentúra na Podporu Výskumu a Vývoja
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
30813552
DOI
10.3390/s19050989
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- autonomní nervový systém fyziologie MeSH
- dospělí MeSH
- galvanická kožní odpověď fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- psychofyziologie metody MeSH
- srdeční frekvence fyziologie MeSH
- strojové učení MeSH
- videohry psychologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems-mainly the misinterpretation and temporal delay during longer experiments-and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ∼96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.
Department of Computer Science Czech Technical University Prague 166 36 Prague Czech Republic
The Biorobotics Institute Scuola Superiore Sant'Anna 560 25 Pisa Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027771
- 003
- CZ-PrNML
- 005
- 20190815114631.0
- 007
- ta
- 008
- 190813s2019 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s19050989 $2 doi
- 035 __
- $a (PubMed)30813552
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Čertický, Martin $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. martin.certicky@tuke.sk.
- 245 10
- $a Psychophysiological Indicators for Modeling User Experience in Interactive Digital Entertainment / $c M. Čertický, M. Čertický, P. Sinčák, G. Magyar, J. Vaščák, F. Cavallo,
- 520 9_
- $a Analyses of user experience in the electronic entertainment industry currently rely on self-reporting methods, such as surveys, ratings, focus group interviews, etc. We argue that self-reporting alone carries inherent problems-mainly the misinterpretation and temporal delay during longer experiments-and therefore, should not be used as a sole metric. To tackle this problem, we propose the possibility of modeling consumer experience using psychophysiological measures and demonstrate how such models can be trained using machine learning methods. We use a machine learning approach to model user experience using real-time data produced by the autonomic nervous system and involuntary psychophysiological responses. Multiple psychophysiological measures, such as heart rate, electrodermal activity, and respiratory activity, have been used in combination with self-reporting to prepare training sets for machine learning algorithms. The training data was collected from 31 participants during hour-long experiment sessions, where they played multiple video-games. Afterwards, we trained and compared the results of four different machine learning models, out of which the best one produced ∼96% accuracy. The results suggest that psychophysiological measures can indeed be used to assess the enjoyment of digital entertainment consumers.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a autonomní nervový systém $x fyziologie $7 D001341
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a galvanická kožní odpověď $x fyziologie $7 D005712
- 650 _2
- $a srdeční frekvence $x fyziologie $7 D006339
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a psychofyziologie $x metody $7 D011603
- 650 _2
- $a videohry $x psychologie $7 D018910
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Čertický, Michal $u Department of Computer Science, Czech Technical University in Prague, 166 36 Prague, Czech Republic. certicky@gmail.com.
- 700 1_
- $a Sinčák, Peter $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. peter.sincak@tuke.sk.
- 700 1_
- $a Magyar, Gergely $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. gergely.magyar@tuke.sk.
- 700 1_
- $a Vaščák, Ján $u Department of Cybernetics and Artificial Intelligence, Technical University in Košice, Letná 9, 040 01 Košice, Slovakia. jan.vascak@tuke.sk.
- 700 1_
- $a Cavallo, Filippo $u The Biorobotics Institute, Scuola Superiore Sant'Anna, 560 25 Pisa, Italy. filippo.cavallo@santannapisa.it.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 19, č. 5 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30813552 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190815114859 $b ABA008
- 999 __
- $a ok $b bmc $g 1432920 $s 1066231
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 19 $c 5 $e 20190226 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- GRA __
- $a APVV-16-0213 $p Agentúra na Podporu Výskumu a Vývoja
- GRA __
- $a APVV-15-0731 $p Agentúra na Podporu Výskumu a Vývoja
- LZP __
- $a Pubmed-20190813