-
Je něco špatně v tomto záznamu ?
Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition
A. Prochazka, S. Gulati, S. Holinka, D. Smutek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2018
PubMed Central
od 2017
Europe PubMed Central
od 2017
ProQuest Central
od 2016-04-01
Health & Medicine (ProQuest)
od 2016-04-01
ROAD: Directory of Open Access Scholarly Resources
od 2002
PubMed
30774015
DOI
10.1177/1533033819830748
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- diagnóza počítačová metody MeSH
- diferenciální diagnóza MeSH
- interpretace obrazu počítačem metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- štítná žláza diagnostické zobrazování patologie MeSH
- support vector machine MeSH
- ultrasonografie metody MeSH
- uzly štítné žlázy klasifikace diagnostické zobrazování patologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027805
- 003
- CZ-PrNML
- 005
- 20190816120528.0
- 007
- ta
- 008
- 190813s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/1533033819830748 $2 doi
- 035 __
- $a (PubMed)30774015
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Prochazka, Antonin $u 1 Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
- 245 10
- $a Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition / $c A. Prochazka, S. Gulati, S. Holinka, D. Smutek,
- 520 9_
- $a In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a diferenciální diagnóza $7 D003937
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a štítná žláza $x diagnostické zobrazování $x patologie $7 D013961
- 650 _2
- $a uzly štítné žlázy $x klasifikace $x diagnostické zobrazování $x patologie $7 D016606
- 650 _2
- $a ultrasonografie $x metody $7 D014463
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Gulati, Sumeet $u 2 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
- 700 1_
- $a Holinka, Stepan $u 3 Third Department of Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
- 700 1_
- $a Smutek, Daniel $u 1 Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 3 Third Department of Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
- 773 0_
- $w MED00185813 $t Technology in cancer research & treatment $x 1533-0338 $g Roč. 18, č. - (2019), s. 1533033819830748
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30774015 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190816120758 $b ABA008
- 999 __
- $a ok $b bmc $g 1432954 $s 1066265
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 18 $c - $d 1533033819830748 $e 20190101 $i 1533-0338 $m Technology in cancer research & treatment $n Technol Cancer Res Treat $x MED00185813
- LZP __
- $a Pubmed-20190813