Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition

A. Prochazka, S. Gulati, S. Holinka, D. Smutek,

. 2019 ; 18 (-) : 1533033819830748. [pub] 20190101

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027805

In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027805
003      
CZ-PrNML
005      
20190816120528.0
007      
ta
008      
190813s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1177/1533033819830748 $2 doi
035    __
$a (PubMed)30774015
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Prochazka, Antonin $u 1 Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
245    10
$a Classification of Thyroid Nodules in Ultrasound Images Using Direction-Independent Features Extracted by Two-Threshold Binary Decomposition / $c A. Prochazka, S. Gulati, S. Holinka, D. Smutek,
520    9_
$a In recent years, several computer-aided diagnosis systems emerged for the diagnosis of thyroid gland disorders using ultrasound imaging. These systems based on machine learning algorithms may offer a second opinion to radiologists by evaluating a malignancy risk of thyroid tissue, thus increasing the overall diagnostic accuracy of ultrasound imaging. Although current computer-aided diagnosis systems exhibit promising results, their use in clinical practice is limited. One of the main limitations is that the majority of them use direction-dependent features. Our intention has been to design a computer-aided diagnosis system, which will use only direction-independent features, that is, it will not be dependent on the orientation and the inclination angle of the ultrasound probe when acquiring the image. We have, therefore, applied histogram analysis and segmentation-based fractal texture analysis algorithm, which calculates direction-independent features only. In our study, 40 thyroid nodules (20 malignant and 20 benign) were used to extract several features, such as histogram parameters, fractal dimension, and mean brightness value in different grayscale bands (obtained by 2-threshold binary decomposition). The features were then used in support vector machine and random forests classifiers to differentiate nodules into malignant and benign classes. Using leave-one-out cross-validation method, the overall accuracy was 92.42% for random forests and 94.64% for support vector machine. Results show that both methods are useful in practice; however, support vector machine provides better results for this application. Proposed computer-aided diagnosis system can provide support to radiologists in their current diagnosis of thyroid nodules, whereby it can optimize the overall accuracy of ultrasound imaging.
650    12
$a algoritmy $7 D000465
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a diferenciální diagnóza $7 D003937
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a support vector machine $7 D060388
650    _2
$a štítná žláza $x diagnostické zobrazování $x patologie $7 D013961
650    _2
$a uzly štítné žlázy $x klasifikace $x diagnostické zobrazování $x patologie $7 D016606
650    _2
$a ultrasonografie $x metody $7 D014463
655    _2
$a časopisecké články $7 D016428
700    1_
$a Gulati, Sumeet $u 2 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
700    1_
$a Holinka, Stepan $u 3 Third Department of Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Smutek, Daniel $u 1 Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 3 Third Department of Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
773    0_
$w MED00185813 $t Technology in cancer research & treatment $x 1533-0338 $g Roč. 18, č. - (2019), s. 1533033819830748
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30774015 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190816120758 $b ABA008
999    __
$a ok $b bmc $g 1432954 $s 1066265
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 18 $c - $d 1533033819830748 $e 20190101 $i 1533-0338 $m Technology in cancer research & treatment $n Technol Cancer Res Treat $x MED00185813
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...