Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs

V. Lukášová, M. Buzgo, K. Vocetková, V. Sovková, M. Doupník, E. Himawan, A. Staffa, R. Sedláček, H. Chlup, F. Rustichelli, E. Amler, M. Rampichová,

. 2019 ; 97 (-) : 567-575. [pub] 20181221

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027877

Grantová podpora
NV17-32285A MZ0 CEP - Centrální evidence projektů
NV17-32285A MZ0 CEP - Centrální evidence projektů

The biofunctionalization of scaffolds for tissue engineering is crucial to improve the results of regenerative therapies. This study compared the effect of platelet-functionalization of 2D electrospun and 3D centrifugal spun scaffolds on the osteogenic potential of hMSCs. Scaffolds prepared from poly-ε-caprolactone, using electrospinning and centrifugal spinning technology, were functionalized using five different concentrations of platelets. Cell proliferation, metabolic activity and osteogenic differentiation were tested using hMSCs cultured in differential and non-differential medium. The porous 3D structure of the centrifugal spun fibers resulted in higher cell proliferation. Furthermore, the functionalization of the scaffolds with platelets resulted in a dose-dependent increase in cell metabolic activity, proliferation and production of an osteogenic marker - alkaline phosphatase. The effect was further promoted by culture in an osteogenic differential medium. The increase in combination of both platelets and osteogenic media shows an improved osteoinduction by platelets in environments rich in inorganic phosphate and ascorbate. Nevertheless, the results of the study showed that the optimal concentration of platelets for induction of hMSC osteogenesis is in the range of 900-3000 × 109 platelets/L. The study determines the potential of electrospun and centrifugal spun fibers with adhered platelets, for use in bone tissue engineering.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027877
003      
CZ-PrNML
005      
20190816111601.0
007      
ta
008      
190813s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.msec.2018.12.069 $2 doi
035    __
$a (PubMed)30678943
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Lukášová, V $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague, Czech Republic.
245    10
$a Needleless electrospun and centrifugal spun poly-ε-caprolactone scaffolds as a carrier for platelets in tissue engineering applications: A comparative study with hMSCs / $c V. Lukášová, M. Buzgo, K. Vocetková, V. Sovková, M. Doupník, E. Himawan, A. Staffa, R. Sedláček, H. Chlup, F. Rustichelli, E. Amler, M. Rampichová,
520    9_
$a The biofunctionalization of scaffolds for tissue engineering is crucial to improve the results of regenerative therapies. This study compared the effect of platelet-functionalization of 2D electrospun and 3D centrifugal spun scaffolds on the osteogenic potential of hMSCs. Scaffolds prepared from poly-ε-caprolactone, using electrospinning and centrifugal spinning technology, were functionalized using five different concentrations of platelets. Cell proliferation, metabolic activity and osteogenic differentiation were tested using hMSCs cultured in differential and non-differential medium. The porous 3D structure of the centrifugal spun fibers resulted in higher cell proliferation. Furthermore, the functionalization of the scaffolds with platelets resulted in a dose-dependent increase in cell metabolic activity, proliferation and production of an osteogenic marker - alkaline phosphatase. The effect was further promoted by culture in an osteogenic differential medium. The increase in combination of both platelets and osteogenic media shows an improved osteoinduction by platelets in environments rich in inorganic phosphate and ascorbate. Nevertheless, the results of the study showed that the optimal concentration of platelets for induction of hMSC osteogenesis is in the range of 900-3000 × 109 platelets/L. The study determines the potential of electrospun and centrifugal spun fibers with adhered platelets, for use in bone tissue engineering.
650    _2
$a alkalická fosfatasa $x metabolismus $7 D000469
650    _2
$a trombocyty $x cytologie $x metabolismus $7 D001792
650    _2
$a buněčná adheze $7 D002448
650    _2
$a buněčné kultury $7 D018929
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a proliferace buněk $7 D049109
650    _2
$a modul pružnosti $7 D055119
650    _2
$a lidé $7 D006801
650    _2
$a mezenchymální kmenové buňky $x cytologie $x metabolismus $7 D059630
650    _2
$a osteogeneze $7 D010012
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a poréznost $7 D016062
650    12
$a tkáňové inženýrství $7 D023822
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
700    1_
$a Buzgo, M $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic.
700    1_
$a Vocetková, K $u Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic.
700    1_
$a Sovková, V $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 5-Motol 150 06, Czech Republic.
700    1_
$a Doupník, M $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic.
700    1_
$a Himawan, E $u InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic.
700    1_
$a Staffa, A $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; InoCure s.r.o., Politických vězňů 935/13, Prague 1, Czech Republic.
700    1_
$a Sedláček, R $u Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic.
700    1_
$a Chlup, H $u Laboratory of Biomechanics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 6, Czech Republic.
700    1_
$a Rustichelli, F $u Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic.
700    1_
$a Amler, E $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic; Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 5-Motol 150 06, Czech Republic.
700    1_
$a Rampichová, M $u University Center for Energy Efficient Buildings (UCEEB), Czech Technical University in Prague, Třinecká 1024, 273 43, Buštěhrad, Czech Republic; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 40 Prague, Czech Republic. Electronic address: michala.rampichova@iem.cas.cz.
773    0_
$w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 97, č. - (2019), s. 567-575
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30678943 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190816111831 $b ABA008
999    __
$a ok $b bmc $g 1433026 $s 1066337
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 97 $c - $d 567-575 $e 20181221 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
GRA    __
$a NV16-28637A $a NV17-32285A $p MZ0 $p MZ0
GRA    __
$a NV16-28637A $a NV17-32285A $p MZ0 $p MZ0
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...