-
Je něco špatně v tomto záznamu ?
First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae: a lack of population structure calls for integrated management of this important fisheries target species
ELR. De Keyzer, Z. De Corte, M. Van Steenberge, JAM. Raeymaekers, FCF. Calboli, N. Kmentová, T. N'Sibula Mulimbwa, M. Virgilio, C. Vangestel, PM. Mulungula, FAM. Volckaert, MPM. Vanhove,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral Open Access
od 2001
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2001
PubMed Central
od 2001 do 2020
Europe PubMed Central
od 2001
ProQuest Central
od 2009-01-01 do 2020-01-31
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2001-02-01
Open Access Digital Library
od 2001-01-01
Medline Complete (EBSCOhost)
od 2001-01-01 do 2020-12-29
Health & Medicine (ProQuest)
od 2009-01-01 do 2020-01-31
ROAD: Directory of Open Access Scholarly Resources
od 2001 do 2021
- MeSH
- analýza hlavních komponent MeSH
- diskriminační analýza MeSH
- fylogeografie MeSH
- genetické lokusy MeSH
- genom * MeSH
- haplotypy genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- jezera * MeSH
- mitochondriální DNA genetika MeSH
- populační genetika * MeSH
- rybářství * MeSH
- ryby genetika MeSH
- sekvence nukleotidů MeSH
- zachování přírodních zdrojů * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
BACKGROUND: Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. RESULTS: We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (FST = 0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global FST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (FST = 0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data. CONCLUSION: Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027930
- 003
- CZ-PrNML
- 005
- 20190819121804.0
- 007
- ta
- 008
- 190813s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12862-018-1325-8 $2 doi
- 035 __
- $a (PubMed)30621593
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a De Keyzer, Els L R $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium. els.dekeyzer@kuleuven.be. Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium. els.dekeyzer@kuleuven.be.
- 245 10
- $a First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae: a lack of population structure calls for integrated management of this important fisheries target species / $c ELR. De Keyzer, Z. De Corte, M. Van Steenberge, JAM. Raeymaekers, FCF. Calboli, N. Kmentová, T. N'Sibula Mulimbwa, M. Virgilio, C. Vangestel, PM. Mulungula, FAM. Volckaert, MPM. Vanhove,
- 520 9_
- $a BACKGROUND: Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. RESULTS: We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (FST = 0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global FST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (FST = 0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data. CONCLUSION: Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 12
- $a zachování přírodních zdrojů $7 D003247
- 650 _2
- $a mitochondriální DNA $x genetika $7 D004272
- 650 _2
- $a diskriminační analýza $7 D016002
- 650 12
- $a rybářství $7 D005398
- 650 _2
- $a ryby $x genetika $7 D005399
- 650 _2
- $a genetické lokusy $7 D056426
- 650 12
- $a populační genetika $7 D005828
- 650 12
- $a genom $7 D016678
- 650 _2
- $a haplotypy $x genetika $7 D006239
- 650 12
- $a jezera $7 D060106
- 650 _2
- $a fylogeografie $7 D058974
- 650 _2
- $a jednonukleotidový polymorfismus $x genetika $7 D020641
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 651 _2
- $a Tanzanie $7 D013636
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a De Corte, Zoë $u Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium. Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.
- 700 1_
- $a Van Steenberge, Maarten $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium. Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium. Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.
- 700 1_
- $a Raeymaekers, Joost A M $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium. Faculty of Bioscience and Aquaculture, Nord University, Universitetsalléen 11, N-8026, Bodø, Norway.
- 700 1_
- $a Calboli, Federico C F $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
- 700 1_
- $a Kmentová, Nikol $u Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic.
- 700 1_
- $a N'Sibula Mulimbwa, Théophile $u Département de Biologie, Centre de Recherche en Hydrobiologie, B.P. 73, Uvira, Democratic Republic of Congo.
- 700 1_
- $a Virgilio, Massimiliano $u Joint Experimental Molecular Unit & Biology Department, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080, Tervuren, Belgium.
- 700 1_
- $a Vangestel, Carl $u Joint Experimental Molecular Unit & Operational Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium.
- 700 1_
- $a Mulungula, Pascal Masilya $u Département de Biologie, Centre de Recherche en Hydrobiologie, B.P. 73, Uvira, Democratic Republic of Congo.
- 700 1_
- $a Volckaert, Filip A M $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium.
- 700 1_
- $a Vanhove, Maarten P M $u Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Charles Deberiotstraat 32, B-3000, Leuven, Belgium. Capacities for Biodiversity and Sustainable Development (CEBioS), Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000, Brussels, Belgium. Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic. Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, FI-00014, Helsinki, Finland. Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, B-3590, Diepenbeek, Belgium.
- 773 0_
- $w MED00006797 $t BMC evolutionary biology $x 1471-2148 $g Roč. 19, č. 1 (2019), s. 6
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30621593 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190819122038 $b ABA008
- 999 __
- $a ok $b bmc $g 1433079 $s 1066390
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 19 $c 1 $d 6 $e 20190108 $i 1471-2148 $m BMC evolutionary biology $n BMC Evol Biol $x MED00006797
- LZP __
- $a Pubmed-20190813