First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae: a lack of population structure calls for integrated management of this important fisheries target species
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30621593
PubMed Central
PMC6323704
DOI
10.1186/s12862-018-1325-8
PII: 10.1186/s12862-018-1325-8
Knihovny.cz E-resources
- Keywords
- East Africa, Fish, Freshwater, Great Lakes, High-throughput sequencing, Panmixis, Population genomics, RAD sequencing, SNP, Stock management,
- MeSH
- Principal Component Analysis MeSH
- Discriminant Analysis MeSH
- Phylogeography MeSH
- Genetic Loci MeSH
- Genome * MeSH
- Haplotypes genetics MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Lakes * MeSH
- DNA, Mitochondrial genetics MeSH
- Genetics, Population * MeSH
- Fisheries * MeSH
- Fishes genetics MeSH
- Base Sequence MeSH
- Conservation of Natural Resources * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Tanzania MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
BACKGROUND: Clupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population. RESULTS: We performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (FST = 0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global FST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (FST = 0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data. CONCLUSION: Our results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.
See more in PubMed
Kopf RK, Finlayson CM, Humphries P, Sims NC, Hladyz S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience. 2015;65:798–811. doi: 10.1093/biosci/biv092. DOI
Chapin FS, III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of changing biodiversity. Nature. 2000;405:234–242. doi: 10.1038/35012241. PubMed DOI
FAO . The State of World Fisheries and Aquaculture. 2016. p. 2016.
de Graaf GJ, Garibaldi L. Circ. 2014. The value of African fisheries. FAO. Fish. Aquac.
Ripple WJ, Wolf C, Galetti M, Newsome TM, Alamgir M, Crist E, et al. World scientists’ warning to humanity: a second notice. Bioscience. 2017;67:1026–1028. doi: 10.1093/biosci/bix125. DOI
Cooke SJ, Allison EH, Beard TD, Arlinghaus R, Arthington AH, Bartley DM, et al. On the sustainability of inland fisheries: finding a future for the forgotten. Ambio. Springer Netherlands. 2016;45:753–764. PubMed PMC
Stephenson RL. Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units. Fish Res. 1999;43:247–249. doi: 10.1016/S0165-7836(99)00076-4. DOI
Hauser L, Carvalho GR. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 2008;9:333–362. doi: 10.1111/j.1467-2979.2008.00299.x. DOI
Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM. Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 2015;16:125–159. doi: 10.1111/faf.12052. DOI
Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 2009;10:361–395. doi: 10.1111/j.1467-2979.2008.00324.x. DOI
Guan W, Cao J, Chen Y, Cieri M, Quinn T. Impacts of population and fishery spatial structures on fishery stock assessment. Can J Fish Aquat Sci. 2013;70:1178–1189. doi: 10.1139/cjfas-2012-0364. DOI
Kerr LA, Hintzen NT, Cadrin SX, Clausen LW, Dickey-collas M, Goethel DR, et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J Mar Sci. 2016;74:1708–1722.
Salzburger W, Van Bocxlaer B, Cohen AS. Ecology and evolution of the African Great Lakes and their faunas. Annu Rev Ecol Evol Syst. 2014;45:519–545. doi: 10.1146/annurev-ecolsys-120213-091804. DOI
Huttula T. Flow, thermal regime and sediment transport studies in Lake Tanganyika. Huttula T, editor. Kuopio University Publications C. Natural and Environ Sci 73; 1997.
De Wever A, Muylaert K, Van Der Gucht K, Pirlot S, Cocquyt C, Descy J, et al. Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Appl Environ Microbiol. 2005;71:5029–5037. doi: 10.1128/AEM.71.9.5029-5037.2005. PubMed DOI PMC
Plisnier PD, Chitamwebwa D, Mwape L, Tshibangu K, Langenberg V, Coenen E. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia. 1999;407:45–58. doi: 10.1023/A:1003762119873. DOI
Danley PD, Husemann M, Ding B, DiPietro LM, Beverly EJ, Peppe DJ. The impact of the geologic history and paleoclimate on the diversification of east African cichlids. Int J Evol Biol. 2012;2012:1–20. doi: 10.1155/2012/574851. PubMed DOI PMC
McGlue MM, Lezzar KE, Cohen AS, Russell JM, Tiercelin JJ, Felton AA, et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J Paleolimnol. 2008;40:635–653. doi: 10.1007/s10933-007-9187-x. DOI
Van der Knaap M, Katonda KI, De Graaf GJ. Lake Tanganyika fisheries frame survey analysis: assessment of the options for management of the fisheries of Lake Tanganyika. Aquat Ecosyst Heal Manag. 2014;17:4–13. doi: 10.1080/14634988.2014.882733. DOI
Mölsä H, Reynolds JE, Coenen EJ, Lindqvist OV. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia. 1999;407:1–24. doi: 10.1023/A:1003712708969. DOI
Coulter GW. British museum (natural history) 1991. Lake Tanganyika and its life.
Kimirei IA, Mgaya YD. Influence of environmental factors on seasonal changes in clupeid catches in the Kigoma area of Lake Tanganyika. African J Aquat Sci. 2007;32:291–298. doi: 10.2989/AJAS.2007.32.3.9.308. DOI
Plisnier PD, Mgana H, Kimirei I, Chande A, Makasa L, Chimanga J, et al. Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika. Hydrobiologia. 2009;625:117–134. doi: 10.1007/s10750-009-9701-4. DOI
Matthes H. Preliminary investigations into the biology of the Lake Tanganyika Clupeidae. Fish Res Bull. 1967;4:1965–1966.
Coulter G. Population changes within a group of fish species following their exploitation. J Fish Biol. 1970;2:329–353. doi: 10.1111/j.1095-8649.1970.tb03292.x. DOI
Roest FC. Stolothrissa tanganicae: population dynamics, biomass evolution and life history in the Burundi waters of Lake Tanganyika. UN, FAO, CIFA Tech Pap. 1977:42–63.
Mulimbwa N, Sarvala J, Raeymaekers JAM. Reproductive activities of two zooplanktivorous clupeid fish in relation to the seasonal abundance of copepod prey in the northern end of Lake Tanganyika. Belgian J Zool. 2014;144:77–92.
Chapman DW. Van well P. growth and mortality of Stolothrissa tanganicae. Trans Am Fish Soc. 1978;107:523–527. doi: 10.1577/1548-8659(1978)107<523:CIBCAC>2.0.CO;2. DOI
Ellis CMA. The size at maturity and breeding seasons of sardines in southern Lake Tanganyika. AfrJTropHydrobiolFish. 1971;1:59–66.
Mgana HF, Herzig A, Mgaya YD. Diel vertical distribution and life history characteristics of Tropodiaptomus simplex and its importance in the diet of Stolothrissa tanganicae, Kigoma, Tanzania. Aquat Ecosyst Health Manag. 2014;17:14–24. doi: 10.1080/14634988.2014.877334. DOI
Coenen EJ, Nikomeze E. Lake Tanganyika, Burundi, results of the 1992–93 catch assessment surveys. 1994.
Van Der Knaap M, Kamitenga DM, Many LN, Tambwe AE, De Graaf GJ. Lake Tanganyika fisheries in post-conflict Democratic Republic of Congo. Aquat Ecosyst Health Manag. 2014;17:34–40. doi: 10.1080/14634988.2014.882722. DOI
Fryer G. Conservation of the Great Lakes of East Africa: a lesson and a warning. Biol Conserv. 1972;4:256–262. doi: 10.1016/0006-3207(72)90121-8. DOI
Britton AW, Day JJ, Doble CJ, Ngatunga BP, Kemp KM, Carbone C, et al. Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biol Conserv. 2017;212:120–129. doi: 10.1016/j.biocon.2017.06.001. DOI
Vasconcellos M, Cochrane K, et al. Overview of world status of data-limited fisheries : inferences from landings statistics. In: Kruse GH, Gallucci VF, Hay DE, Perry RI, Peterman RM, Shirley TC, et al., editors. Fish assess Manag data-limited situations. Anchorage: Alaska Sea Grant College Program University of Alaska Fairbanks Lowell; 2005. pp. 1–20.
Hutchings JA, Reynolds JD. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience. 2004;54:297-309.
Murphy GI. Vital statistics of the Pacific sardine (Sardinops Caerulea) and the population consequences. Ecology. 1967;48:731–736. doi: 10.2307/1933730. PubMed DOI
Zwolinski JP, Emmett RL, Demer DA. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax) ICES J Mar Sci. 2011;68:867–879. doi: 10.1093/icesjms/fsr038. DOI
Overholtz WJ. The Gulf of Maine - Georges Bank Atlantic herring (Clupea harengus): spatial pattern analysis of the collapse and recovery of a large marine fish complex. Fish Res. 2002;57:237–254. doi: 10.1016/S0165-7836(01)00359-9. DOI
Hess JE, Matala AP, Narum SR. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River basin. Mol Ecol Resour. 2011;11:137–149. doi: 10.1111/j.1755-0998.2010.02958.x. PubMed DOI
Cohen AS, Talbot MR, Awramik SM, Dettman DL, Abell P. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Bull Geol Soc Am. 1997;109:444–460. doi: 10.1130/0016-7606(1997)109<0444:LLAPHO>2.3.CO;2. DOI
Mesnick SL, Taylor BL, Archer FI, Martien KK, Treviño SE, Hancock-Hanser BL, et al. Sperm whale population structure in the eastern and central North Pacific inferred by the use of single-nucleotide polymorphisms, microsatellites and mitochondrial DNA. Mol Ecol Resour. 2011;11:278–298. doi: 10.1111/j.1755-0998.2010.02973.x. PubMed DOI
Puckett EE, Eggert LS. Comparison of SNP and microsatellite genotyping panels for spatial assignment of individuals to natal range: a case study using the American black bear (Ursus americanus) Biol Conserv. 2016;193:86–93. doi: 10.1016/j.biocon.2015.11.020. DOI
Grant WS, Bowen BW. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for coservation. J Hered. 1998;89:415–426. doi: 10.1093/jhered/89.5.415. DOI
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–299. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Bandelt H-J, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–1116. doi: 10.1111/2041-210X.12410. DOI
Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4:782–788. doi: 10.1111/2041-210X.12067. DOI
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–3302. doi: 10.1093/molbev/msx248. PubMed DOI
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:1–7. doi: 10.1371/journal.pone.0003376. PubMed DOI PMC
Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol. 2011;772:157–178. doi: 10.1007/978-1-61779-228-1_9. PubMed DOI PMC
Barrio AM, Lamichhaney S, Fan G, Rafati N, Pettersson M, Zhang H, et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. elife. 2016;5:1–32. PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH, De Koning D-J. Stacks: building and genotyping loci de novo from short-read sequences. G3journall. 2011;1:171–182. PubMed PMC
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15. doi: 10.1186/1471-2156-11-94. PubMed DOI PMC
Malinsky M, Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: population inference from RADseq data. Mol Biol Evol. 2018;35:1284–1290. doi: 10.1093/molbev/msy023. PubMed DOI PMC
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLOS Genet Public Library of Science. 2012;8:1–16. PubMed PMC
Peakall R, Ruibal M, Lindenmayer DB, Url S. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution (N Y) 2003;57:1182–1195. PubMed
Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13:921–935. doi: 10.1046/j.1365-294X.2004.02076.x. PubMed DOI
Peakall R, Smouse PE. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–993. doi: 10.1534/genetics.108.092221. PubMed DOI PMC
Narum SR, Hess JE. Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour. 2011;11:184–194. doi: 10.1111/j.1755-0998.2011.02987.x. PubMed DOI
Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez E, Caballero A. Comparing three different methods to detect selective loci using dominant markers. J Evol Biol. 2010;23:2267–2276. doi: 10.1111/j.1420-9101.2010.02093.x. PubMed DOI
Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–1699. doi: 10.1093/molbev/mst063. PubMed DOI PMC
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6:925–929. doi: 10.1111/2041-210X.12382. DOI
Lamichhaney S, Fuentes-pardo AP, Rafati N, Ryman N, Mccracken GR. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci. 2017;114:3452–3461. doi: 10.1073/pnas.1617728114. PubMed DOI PMC
van Zwieten PAM, Roest FC, Machiels MAM, van Densen WLT. Effects of inter-annual variability , seasonality and persistence on the perception of long-term trends in catch rates of the industrial pelagic purse-seine fishery of northern Lake Tanganyika (Burundi) Fish Res. 2002;54:329–348. doi: 10.1016/S0165-7836(01)00267-3. DOI
Phiri H, Shirakihara K. Distribution and seasonal movement of pelagic fish in southern Lake Tanganyika. Fish Res. 1999;41:63–71. doi: 10.1016/S0165-7836(99)00008-9. DOI
Sinclair MM, IIles TD. Population regulation and speciation in the oceans. J du Cons Int Explor la Mer. 1989;45:165–175. doi: 10.1093/icesjms/45.2.165. DOI
Verheyen E, Rüber L, Snoeks J, Meyer A. Evolution on islands - Mitochondrial phylogeography of rock-dwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philos Trans R Soc London Ser B Biol Sci. 1996;351:797 LP–797805. doi: 10.1098/rstb.1996.0074. PubMed DOI
Koblmüller S, Salzburger W, Obermüller B, Eigner E, Sturmbauer C, Sefc KM. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Mol Ecol. 2011;20:2272–90. PubMed
Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol. 2001;18:144–154. doi: 10.1093/oxfordjournals.molbev.a003788. PubMed DOI
Koblmüller S, Odhiambo EA, Sinyinza D, Sturmbauer C, Sefc KM. Big fish, little divergence: phylogeography of Lake Tanganyika’s giant cichlid, Boulengerochromis microlepis. Hydrobiologia. 2015;748:29–38. doi: 10.1007/s10750-014-1863-z. PubMed DOI PMC
Koblmüller S, Zangl L, Börger C, Daill D, Vanhove MPM, Sturmbauer C, et al. Only true pelagics mix: comparative phylogeography of Deepwater bathybatine cichlids from Lake Tanganyika. Hydrobiologia. 2018;3:1-11. PubMed PMC
Whitehead PJP. FAO Species catalogue: Vol. 7 Clupeoid fishes of the world. FAO fish. synopsis. 1985.
Thompson AB. Simulation of reproductive rate, prey selection and the survival of pelagic fish of the African Great Lakes. Hydrobiologia. 1999;407:207–218. doi: 10.1023/A:1003704523990. DOI
Mulimbwa N, Shirakihara K. Growth, recruitment and reproduction of sardines (Stolothrissa tanganicae and Limnothrissa miodon) in northwester Lake Tanganyika. Tropics. 1994;4:57–67. doi: 10.3759/tropics.4.57. DOI
Kinsey ST, Orsoy T, Bert TM, Mahmoudi B. Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Mar Biol. 1994;118:309–317. doi: 10.1007/BF00349798. DOI
García-Rodríguez FJ, García-Gasca SA, La C-AJD, Cota-Gómez VM. A study of the population structure of the Pacific sardine Sardinops sagax (Jenyns, 1842) in Mexico based on morphometric and genetic analyses. Fish Res. 2011;107:169–176. doi: 10.1016/j.fishres.2010.11.002. DOI
Sebastian W, Sukumaran S, Zacharia PU, Gopalakrishnan A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conserv Genet Springer Netherlands. 2017;18:951–964. doi: 10.1007/s10592-017-0946-6. DOI
Atarhouch T, Rami M, Naciri M, Dakkak A. Genetic population structure of sardine (Sardina pilchardus) off Morocco detected with intron polymorphism (EPIC-PCR) Mar Biol. 2007;150:521–528. doi: 10.1007/s00227-006-0371-8. DOI
Gonzalez EG, Zardoya R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus) BMC Evol Biol. 2007;7:197. doi: 10.1186/1471-2148-7-197. PubMed DOI PMC
Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus) Mol Ecol. 2012;21:3686–3703. doi: 10.1111/j.1365-294X.2012.05639.x. PubMed DOI
Corander J, Majander KK, Cheng L, Merilä J. High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol. 2013;22:2931–2940. doi: 10.1111/mec.12174. PubMed DOI
Mulimbwa N, Sarvala J, Micha J-C. The larval fishery on Limnothrissa miodon in the Congolese waters of Lake Tanganyika: impact on exploitable biomass and the value of the fishery. Fish Manag Ecol. 2018:1-7.
McLean KA, Byanaku A, Kubikonse A, Tshowe V, Katensi S, Lehman AG. Fishing with bed nets on Lake Tanganyika: a randomized survey. Malar J. 2014;13:395. doi: 10.1186/1475-2875-13-395. PubMed DOI PMC