-
Je něco špatně v tomto záznamu ?
Membrane targeting of the yeast exocyst complex
R. Pleskot, L. Cwiklik, P. Jungwirth, V. Žárský, M. Potocký,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčná membrána chemie metabolismus MeSH
- exocytóza * MeSH
- fosfatidylinositol-4,5-difosfát chemie metabolismus MeSH
- kinetika MeSH
- mutace MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- rho proteiny vázající GTP chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekreční dráha MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- vezikulární transportní proteiny chemie genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits - Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.
Department of Experimental Plant Biology Charles University Prague 128 44 Prague Czech Republic
Department of Physics Tampere University of Technology FI 33101 Tampere Finland
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000181
- 003
- CZ-PrNML
- 005
- 20160122104420.0
- 007
- ta
- 008
- 160108s2015 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbamem.2015.03.026 $2 doi
- 035 __
- $a (PubMed)25838123
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Pleskot, Roman $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic. Electronic address: pleskot@ueb.cas.cz.
- 245 10
- $a Membrane targeting of the yeast exocyst complex / $c R. Pleskot, L. Cwiklik, P. Jungwirth, V. Žárský, M. Potocký,
- 520 9_
- $a The exocytosis is a process of fusion of secretory vesicles with plasma membrane, which plays a prominent role in many crucial cellular processes, e.g. secretion of neurotransmitters, cytokinesis or yeast budding. Prior to the SNARE-mediated fusion, the initial contact of secretory vesicle with the target membrane is mediated by an evolutionary conserved vesicle tethering protein complex, the exocyst. In all eukaryotic cells, the exocyst is composed of eight subunits - Sec5, Sec6, Sec8, Sec10, Sec15, Exo84 and two membrane-targeting landmark subunits Sec3 and Exo70, which have been described to directly interact with phosphatidylinositol (4,5)-bisphosphate (PIP2) of the plasma membrane. In this work, we utilized coarse-grained molecular dynamics simulations to elucidate structural details of the interaction of yeast Sec3p and Exo70p with lipid bilayers containing PIP2. We found that PIP2 is coordinated by the positively charged pocket of N-terminal part of Sec3p, which folds into unique Pleckstrin homology domain. Conversely, Exo70p interacts with the lipid bilayer by several binding sites distributed along the structure of this exocyst subunit. Moreover, we observed that the interaction of Exo70p with the membrane causes clustering of PIP2 in the adjacent leaflet. We further revealed that PIP2 is required for the correct positioning of small GTPase Rho1p, a direct Sec3p interactor, prior to the formation of the functional Rho1p-exocyst-membrane assembly. Our results show the critical importance of the plasma membrane pool of PIP2 for the exocyst function and suggest that specific interaction with acidic phospholipids represents an ancestral mechanism for the exocyst regulation.
- 650 _2
- $a buněčná membrána $x chemie $x metabolismus $7 D002462
- 650 12
- $a exocytóza $7 D005089
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a fosfatidylinositol-4,5-difosfát $x chemie $x metabolismus $7 D019269
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a podjednotky proteinů $x chemie $x genetika $x metabolismus $7 D021122
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x genetika $x metabolismus $7 D029701
- 650 _2
- $a sekreční dráha $7 D055571
- 650 _2
- $a vezikulární transportní proteiny $x chemie $x genetika $x metabolismus $7 D033921
- 650 _2
- $a rho proteiny vázající GTP $x chemie $x genetika $x metabolismus $7 D020741
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cwiklik, Lukasz $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic; J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 182 23 Prague, Czech Republic.
- 700 1_
- $a Jungwirth, Pavel $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague, Czech Republic; Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland.
- 700 1_
- $a Žárský, Viktor $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague, Czech Republic; Department of Experimental Plant Biology, Charles University in Prague, 128 44 Prague, Czech Republic.
- 700 1_
- $a Potocký, Martin $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague, Czech Republic. Electronic address: potocky@ueb.cas.cz.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta. Complete edition $x 0006-3002 $g Roč. 1848, č. 7 (2015), s. 1481-9
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25838123 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160122104540 $b ABA008
- 999 __
- $a ok $b bmc $g 1102462 $s 924387
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 1848 $c 7 $d 1481-9 $e 20150330 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314 $o Complete edition
- LZP __
- $a Pubmed-20160108