-
Je něco špatně v tomto záznamu ?
Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events
Z. Füssy, M. Oborník,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
- MeSH
- biologická evoluce MeSH
- Eukaryota klasifikace genetika metabolismus MeSH
- fotosyntéza MeSH
- plastidy genetika metabolismus MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028335
- 003
- CZ-PrNML
- 005
- 20190815112018.0
- 007
- ta
- 008
- 190813s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/978-1-4939-8654-5_2 $2 doi
- 035 __
- $a (PubMed)29987712
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Füssy, Zoltán $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic. University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
- 245 10
- $a Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events / $c Z. Füssy, M. Oborník,
- 520 9_
- $a A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
- 650 _2
- $a biologická evoluce $7 D005075
- 650 _2
- $a Eukaryota $x klasifikace $x genetika $x metabolismus $7 D056890
- 650 _2
- $a fotosyntéza $7 D010788
- 650 _2
- $a plastidy $x genetika $x metabolismus $7 D018087
- 650 12
- $a symbióza $7 D013559
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Oborník, Miroslav $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic. obornik@paru.cas.cz. University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic. obornik@paru.cas.cz.
- 773 0_
- $w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 1829, č. - (2018), s. 17-35
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29987712 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190815112246 $b ABA008
- 999 __
- $a ok $b bmc $g 1433484 $s 1066795
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 1829 $c - $d 17-35 $e - $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
- LZP __
- $a Pubmed-20190813