• Je něco špatně v tomto záznamu ?

Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events

Z. Füssy, M. Oborník,

. 2018 ; 1829 (-) : 17-35. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028335

A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028335
003      
CZ-PrNML
005      
20190815112018.0
007      
ta
008      
190813s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-1-4939-8654-5_2 $2 doi
035    __
$a (PubMed)29987712
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Füssy, Zoltán $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic. University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic.
245    10
$a Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events / $c Z. Füssy, M. Oborník,
520    9_
$a A substantial portion of eukaryote diversity consists of algae with complex plastids, i.e., plastids originating from eukaryote-to-eukaryote endosymbioses. These plastids are characteristic by a deviating number of envelope membranes (higher than two), and sometimes a remnant nucleus of the endosymbiont alga, termed the nucleomorph, is present. Complex plastid-bearing algae are therefore much like living matryoshka dolls, eukaryotes within eukaryotes. In comparison, primary plastids of Archaeplastida (plants, green algae, red algae, and glaucophytes) arose upon a single endosymbiosis event with a cyanobacterium and are surrounded by two membranes. Complex plastids were acquired several times by unrelated groups nested within eukaryotic heterotrophs, suggesting complex plastids are somewhat easier to obtain than primary plastids. This is consistent with the existence of higher-order and serial endosymbioses, i.e., engulfment of complex plastid-bearing algae by (tertiary) eukaryotic hosts and functional plastid replacements, respectively. Plastid endosymbiosis is typical by a massive transfer of genetic material from the endosymbiont to the host nucleus and metabolic rearrangements related to the trophic switch to phototrophy; this is necessary to establish metabolic integration of the plastid and control over its division. Although photosynthesis is the main advantage of plastid acquisition, algae that lost photosynthesis often maintain complex plastids, suggesting their roles beyond photosynthesis. This chapter summarizes basic knowledge on acquisition and functions of complex plastid.
650    _2
$a biologická evoluce $7 D005075
650    _2
$a Eukaryota $x klasifikace $x genetika $x metabolismus $7 D056890
650    _2
$a fotosyntéza $7 D010788
650    _2
$a plastidy $x genetika $x metabolismus $7 D018087
650    12
$a symbióza $7 D013559
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Oborník, Miroslav $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic. obornik@paru.cas.cz. University of South Bohemia, Faculty of Science, Branišovská 31, 37005, České Budějovice, Czech Republic. obornik@paru.cas.cz.
773    0_
$w MED00180389 $t Methods in molecular biology (Clifton, N.J.) $x 1940-6029 $g Roč. 1829, č. - (2018), s. 17-35
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29987712 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190815112246 $b ABA008
999    __
$a ok $b bmc $g 1433484 $s 1066795
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 1829 $c - $d 17-35 $e - $i 1940-6029 $m Methods in molecular biology $n Methods Mol Biol $x MED00180389
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...