-
Je něco špatně v tomto záznamu ?
Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks
S. Raymond, Y. Maazouz, EB. Montufar, RA. Perez, B. González, J. Konka, J. Kaiser, MP. Ginebra,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- buněčná adheze MeSH
- fosforečnany vápenaté chemie MeSH
- inkoust * MeSH
- krysa rodu rattus MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- nanostruktury chemie MeSH
- pevnost v tlaku MeSH
- polyethyleny chemie MeSH
- polypropyleny chemie MeSH
- potkani inbrední LEW MeSH
- tkáňové podpůrné struktury chemie MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds' architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.
CEITEC Central European Institute of Technology Brno University of Technology Brno Czech Republic
Mimetis Biomaterials Cerdanyola del Vallès Barcelona Spain
UIC Regenerative Medicine Research Institute Universitat Internacional de Catalunya Barcelona Spain
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028407
- 003
- CZ-PrNML
- 005
- 20190816092700.0
- 007
- ta
- 008
- 190813s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.actbio.2018.05.042 $2 doi
- 035 __
- $a (PubMed)29842972
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Raymond, Santiago $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Mimetis Biomaterials, Cerdanyola del Vallès, Barcelona, Spain.
- 245 10
- $a Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks / $c S. Raymond, Y. Maazouz, EB. Montufar, RA. Perez, B. González, J. Konka, J. Kaiser, MP. Ginebra,
- 520 9_
- $a Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds' architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a fosforečnany vápenaté $x chemie $7 D002130
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a pevnost v tlaku $7 D019245
- 650 _2
- $a vysoká teplota $7 D006358
- 650 12
- $a inkoust $7 D007281
- 650 _2
- $a mezenchymální kmenové buňky $x cytologie $x metabolismus $7 D059630
- 650 _2
- $a nanostruktury $x chemie $7 D049329
- 650 _2
- $a polyethyleny $x chemie $7 D011095
- 650 _2
- $a polypropyleny $x chemie $7 D011126
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a potkani inbrední LEW $7 D011917
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Maazouz, Yassine $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Mimetis Biomaterials, Cerdanyola del Vallès, Barcelona, Spain.
- 700 1_
- $a Montufar, Edgar B $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Perez, Roman A $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; UIC Regenerative Medicine Research Institute. Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
- 700 1_
- $a González, Borja $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
- 700 1_
- $a Konka, Joanna $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
- 700 1_
- $a Kaiser, Jozef $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
- 700 1_
- $a Ginebra, Maria-Pau $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. Electronic address: maria.pau.ginebra@upc.edu.
- 773 0_
- $w MED00008542 $t Acta biomaterialia $x 1878-7568 $g Roč. 75, č. - (2018), s. 451-462
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29842972 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190816092930 $b ABA008
- 999 __
- $a ok $b bmc $g 1433556 $s 1066867
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 75 $c - $d 451-462 $e 20180526 $i 1878-7568 $m Acta biomaterialia $n Acta Biomater $x MED00008542
- LZP __
- $a Pubmed-20190813