• Je něco špatně v tomto záznamu ?

Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks

S. Raymond, Y. Maazouz, EB. Montufar, RA. Perez, B. González, J. Konka, J. Kaiser, MP. Ginebra,

. 2018 ; 75 (-) : 451-462. [pub] 20180526

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028407

Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds' architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028407
003      
CZ-PrNML
005      
20190816092700.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.actbio.2018.05.042 $2 doi
035    __
$a (PubMed)29842972
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Raymond, Santiago $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Mimetis Biomaterials, Cerdanyola del Vallès, Barcelona, Spain.
245    10
$a Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks / $c S. Raymond, Y. Maazouz, EB. Montufar, RA. Perez, B. González, J. Konka, J. Kaiser, MP. Ginebra,
520    9_
$a Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow hardening kinetics hampers the translation to the clinics. Different hydrothermal treatments for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink were explored, comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: 3D plotting has opened up new perspectives in the bone regeneration field allowing the customisation of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this technique allows the control of the scaffolds' architecture and porosity. The present work introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole fabrication process from the several days required for the biomimetic processing to a few hours; and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility results support its suitability for cell-based bone regeneration therapies.
650    _2
$a zvířata $7 D000818
650    _2
$a fosforečnany vápenaté $x chemie $7 D002130
650    _2
$a buněčná adheze $7 D002448
650    _2
$a pevnost v tlaku $7 D019245
650    _2
$a vysoká teplota $7 D006358
650    12
$a inkoust $7 D007281
650    _2
$a mezenchymální kmenové buňky $x cytologie $x metabolismus $7 D059630
650    _2
$a nanostruktury $x chemie $7 D049329
650    _2
$a polyethyleny $x chemie $7 D011095
650    _2
$a polypropyleny $x chemie $7 D011126
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani inbrední LEW $7 D011917
650    _2
$a tkáňové podpůrné struktury $x chemie $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Maazouz, Yassine $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Mimetis Biomaterials, Cerdanyola del Vallès, Barcelona, Spain.
700    1_
$a Montufar, Edgar B $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Perez, Roman A $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; UIC Regenerative Medicine Research Institute. Universitat Internacional de Catalunya (UIC), Barcelona, Spain.
700    1_
$a González, Borja $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
700    1_
$a Konka, Joanna $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
700    1_
$a Kaiser, Jozef $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Ginebra, Maria-Pau $u Dept. Materials Science and Metallurgical Engineering, Group of Biomaterials, Biomechanics and Tissue Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. Electronic address: maria.pau.ginebra@upc.edu.
773    0_
$w MED00008542 $t Acta biomaterialia $x 1878-7568 $g Roč. 75, č. - (2018), s. 451-462
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29842972 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190816092930 $b ABA008
999    __
$a ok $b bmc $g 1433556 $s 1066867
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 75 $c - $d 451-462 $e 20180526 $i 1878-7568 $m Acta biomaterialia $n Acta Biomater $x MED00008542
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...