Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Ergodicity and parameter estimates in auditory neural circuits

PG. Toth, P. Marsalek, O. Pokora,

. 2018 ; 112 (1-2) : 41-55. [pub] 20171029

Language English Country Germany

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 1996-08-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-01-01 to 1 year ago

This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028707
003      
CZ-PrNML
005      
20190820085047.0
007      
ta
008      
190813s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00422-017-0739-5 $2 doi
035    __
$a (PubMed)29082437
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Toth, Peter G $u Institute of Pathological Physiology, First Medical Faculty, Charles University, U Nemocnice 5, 12853, Prague 2, Czech Republic.
245    10
$a Ergodicity and parameter estimates in auditory neural circuits / $c PG. Toth, P. Marsalek, O. Pokora,
520    9_
$a This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a zvířata $7 D000818
650    _2
$a sluchová dráha $x fyziologie $7 D001306
650    _2
$a sluchová percepce $x fyziologie $7 D001307
650    _2
$a počítačová simulace $7 D003198
650    _2
$a sluch $x fyziologie $7 D006309
650    _2
$a lidé $7 D006801
650    12
$a modely neurologické $7 D008959
650    _2
$a nervová síť $x fyziologie $7 D009415
650    _2
$a neurony $x fyziologie $7 D009474
650    12
$a pravděpodobnost $7 D011336
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Marsalek, Petr $u Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187, Dresden, Germany. Marsalek@pks.mpg.de. Czech Technical University in Prague, Zikova 1903/4, 16636, Prague 6, Czech Republic. Marsalek@pks.mpg.de.
700    1_
$a Pokora, Ondrej $u Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
773    0_
$w MED00000732 $t Biological cybernetics $x 1432-0770 $g Roč. 112, č. 1-2 (2018), s. 41-55
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29082437 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190820085322 $b ABA008
999    __
$a ok $b bmc $g 1433856 $s 1067167
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 112 $c 1-2 $d 41-55 $e 20171029 $i 1432-0770 $m Biological cybernetics $n Biol Cybern $x MED00000732
LZP    __
$a Pubmed-20190813

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...