-
Something wrong with this record ?
Ergodicity and parameter estimates in auditory neural circuits
PG. Toth, P. Marsalek, O. Pokora,
Language English Country Germany
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
ProQuest Central
from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost)
from 1996-08-01 to 1 year ago
Health & Medicine (ProQuest)
from 1997-01-01 to 1 year ago
- MeSH
- Action Potentials physiology MeSH
- Time Factors MeSH
- Humans MeSH
- Models, Neurological * MeSH
- Nerve Net physiology MeSH
- Neurons physiology MeSH
- Computer Simulation MeSH
- Probability * MeSH
- Hearing physiology MeSH
- Auditory Pathways physiology MeSH
- Auditory Perception physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028707
- 003
- CZ-PrNML
- 005
- 20190820085047.0
- 007
- ta
- 008
- 190813s2018 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00422-017-0739-5 $2 doi
- 035 __
- $a (PubMed)29082437
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Toth, Peter G $u Institute of Pathological Physiology, First Medical Faculty, Charles University, U Nemocnice 5, 12853, Prague 2, Czech Republic.
- 245 10
- $a Ergodicity and parameter estimates in auditory neural circuits / $c PG. Toth, P. Marsalek, O. Pokora,
- 520 9_
- $a This paper discusses ergodic properties and circular statistical characteristics in neuronal spike trains. Ergodicity means that the average taken over a long time period and over smaller population should equal the average in less time and larger population. The objectives are to show simple examples of design and validation of a neuronal model, where the ergodicity assumption helps find correspondence between variables and parameters. The methods used are analytical and numerical computations, numerical models of phenomenological spiking neurons and neuronal circuits. Results obtained using these methods are the following. They are: a formula to calculate vector strength of neural spike timing dependent on the spike train parameters, description of parameters of spike train variability and model of output spiking density based on assumption of the computation realized by sound localization neural circuit. Theoretical results are illustrated by references to experimental data. Examples of neurons where spike trains have and do not have the ergodic property are then discussed.
- 650 _2
- $a akční potenciály $x fyziologie $7 D000200
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sluchová dráha $x fyziologie $7 D001306
- 650 _2
- $a sluchová percepce $x fyziologie $7 D001307
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a sluch $x fyziologie $7 D006309
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a modely neurologické $7 D008959
- 650 _2
- $a nervová síť $x fyziologie $7 D009415
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 12
- $a pravděpodobnost $7 D011336
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Marsalek, Petr $u Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187, Dresden, Germany. Marsalek@pks.mpg.de. Czech Technical University in Prague, Zikova 1903/4, 16636, Prague 6, Czech Republic. Marsalek@pks.mpg.de.
- 700 1_
- $a Pokora, Ondrej $u Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
- 773 0_
- $w MED00000732 $t Biological cybernetics $x 1432-0770 $g Roč. 112, č. 1-2 (2018), s. 41-55
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29082437 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190820085322 $b ABA008
- 999 __
- $a ok $b bmc $g 1433856 $s 1067167
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 112 $c 1-2 $d 41-55 $e 20171029 $i 1432-0770 $m Biological cybernetics $n Biol Cybern $x MED00000732
- LZP __
- $a Pubmed-20190813