-
Je něco špatně v tomto záznamu ?
Electrodialysis-based zero liquid discharge in industrial wastewater treatment
J. Havelka, H. Fárová, T. Jiříček, T. Kotala, J. Kroupa,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1982-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1982-01-01 do Před 1 rokem
ROAD: Directory of Open Access Scholarly Resources
od 1994
PubMed
31169516
DOI
10.2166/wst.2019.161
Knihovny.cz E-zdroje
- MeSH
- chlorid sodný MeSH
- čištění vody MeSH
- filtrace MeSH
- membrány umělé MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda MeSH
- osmóza MeSH
- salinita MeSH
- Publikační typ
- časopisecké články MeSH
Over the past few decades, reverse osmosis (RO) has been the dominant technology employed in zero liquid discharge (ZLD) systems for industrial wastewater treatment (WWT). However, RO is limited to a maximum operating salinity of about 75 g kg-1. Electrodialysis (ED) is a potentially attractive option as it can achieve much higher concentrations, thereby reducing the capacity and energy demand of the subsequent evaporation step. Feed-and-bleed experiments were undertaken on a laboratory-scale ED stack using a series of model solutions based on the most common inorganic salts with the aim of determining maximum achievable concentrations. The maximum salt concentration achievable via ED ranged between 104.2 and 267.6 g kg-1, with levels predominantly limited by water transport. In addition, a straightforward review of how ED incorporation can affect ZLD process economics is presented. The operational cost of an ED-based ZLD system for processing RO retentate was almost 20% lower than comparable processes employing high-efficiency RO and disc tubular RO. As the ED-based ZLD system appears economically preferable, and as maximum achievable concentrations greatly exceeded RO operating limits, it would appear to be a promising approach for bridging the gap between RO and evaporation, and may even eliminate the evaporation step altogether.
MEGA a s Pod Vinicí 87 471 27 Stráž pod Ralskem Czech Republic
MemBrain s r o Pod Vinicí 87 471 27 Stráž pod Ralskem Czech Republic E mail
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034517
- 003
- CZ-PrNML
- 005
- 20191010130216.0
- 007
- ta
- 008
- 191007s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2166/wst.2019.161 $2 doi
- 035 __
- $a (PubMed)31169516
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Havelka, Jan $u MemBrain s.r.o, Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic E-mail: jan.havelka@membrain.cz.
- 245 10
- $a Electrodialysis-based zero liquid discharge in industrial wastewater treatment / $c J. Havelka, H. Fárová, T. Jiříček, T. Kotala, J. Kroupa,
- 520 9_
- $a Over the past few decades, reverse osmosis (RO) has been the dominant technology employed in zero liquid discharge (ZLD) systems for industrial wastewater treatment (WWT). However, RO is limited to a maximum operating salinity of about 75 g kg-1. Electrodialysis (ED) is a potentially attractive option as it can achieve much higher concentrations, thereby reducing the capacity and energy demand of the subsequent evaporation step. Feed-and-bleed experiments were undertaken on a laboratory-scale ED stack using a series of model solutions based on the most common inorganic salts with the aim of determining maximum achievable concentrations. The maximum salt concentration achievable via ED ranged between 104.2 and 267.6 g kg-1, with levels predominantly limited by water transport. In addition, a straightforward review of how ED incorporation can affect ZLD process economics is presented. The operational cost of an ED-based ZLD system for processing RO retentate was almost 20% lower than comparable processes employing high-efficiency RO and disc tubular RO. As the ED-based ZLD system appears economically preferable, and as maximum achievable concentrations greatly exceeded RO operating limits, it would appear to be a promising approach for bridging the gap between RO and evaporation, and may even eliminate the evaporation step altogether.
- 650 _2
- $a filtrace $7 D005374
- 650 _2
- $a membrány umělé $7 D008567
- 650 _2
- $a osmóza $7 D009995
- 650 _2
- $a salinita $7 D054712
- 650 _2
- $a chlorid sodný $7 D012965
- 650 _2
- $a odpad tekutý - odstraňování $x metody $7 D014865
- 650 _2
- $a odpadní voda $7 D062065
- 650 _2
- $a čištění vody $7 D018508
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Fárová, Hana $u MemBrain s.r.o, Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic E-mail: jan.havelka@membrain.cz.
- 700 1_
- $a Jiříček, Tomáš $u MemBrain s.r.o, Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic E-mail: jan.havelka@membrain.cz.
- 700 1_
- $a Kotala, Tomáš $u MemBrain s.r.o, Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic E-mail: jan.havelka@membrain.cz.
- 700 1_
- $a Kroupa, Jan $u MEGA a.s., Pod Vinicí 87, 471 27 Stráž pod Ralskem, Czech Republic.
- 773 0_
- $w MED00181099 $t Water science and technology : a journal of the International Association on Water Pollution Research $x 0273-1223 $g Roč. 79, č. 8 (2019), s. 1580-1586
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31169516 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191010130635 $b ABA008
- 999 __
- $a ok $b bmc $g 1451177 $s 1073067
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 79 $c 8 $d 1580-1586 $e - $i 0273-1223 $m Water science and technology. $n Water sci. technol. $x MED00181099
- LZP __
- $a Pubmed-20191007