• Je něco špatně v tomto záznamu ?

Heat-treated carbon coatings on poly (l-lactide) foils for tissue engineering

J. Lišková, N. Slepičková Kasálková, P. Slepička, V. Švorčík, L. Bačáková,

. 2019 ; 100 (-) : 117-128. [pub] 20190228

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034663

Carbon-based materials have emerged as promising candidates for a wide variety of biomedical applications, including tissue engineering. We have developed a simple but unique technique for patterning carbon-based substrates in order to control cell adhesion, growth and phenotypic maturation. Carbon films were deposited on PLLA foils from distances of 3 to 7 cm. Subsequent heat-treatment (60 °C, 1 h) created lamellar structures with dimensions decreasing from micro- to nanoscale with increasing deposition distance. All carbon films improved the spreading and proliferation of human osteoblast-like MG 63 cells, and promoted the alignment of these cells along the lamellar structures. Similar alignment was observed in human osteoblast-like Saos-2 cells and in human dermal fibroblasts. Type I collagen fibers produced by Saos-2 cells and fibroblasts were also oriented along the lamellar structures. These structures increased the activity of alkaline phosphatase in Saos-2 cells. Carbon coatings also supported adhesion and growth of vascular endothelial and smooth muscle cells, particularly flatter non-heated carbon films. On these films, the continuity of the endothelial cell layer was better than on heat-treated lamellar surfaces. Heat-treated carbon-coated PLLA is therefore more suitable for bone and skin tissue engineering, while carbon-coated PLLA without heating is more appropriate for vascular tissue engineering.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034663
003      
CZ-PrNML
005      
20191014103734.0
007      
ta
008      
191007s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.msec.2019.02.105 $2 doi
035    __
$a (PubMed)30948046
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Lišková, Jana $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
245    10
$a Heat-treated carbon coatings on poly (l-lactide) foils for tissue engineering / $c J. Lišková, N. Slepičková Kasálková, P. Slepička, V. Švorčík, L. Bačáková,
520    9_
$a Carbon-based materials have emerged as promising candidates for a wide variety of biomedical applications, including tissue engineering. We have developed a simple but unique technique for patterning carbon-based substrates in order to control cell adhesion, growth and phenotypic maturation. Carbon films were deposited on PLLA foils from distances of 3 to 7 cm. Subsequent heat-treatment (60 °C, 1 h) created lamellar structures with dimensions decreasing from micro- to nanoscale with increasing deposition distance. All carbon films improved the spreading and proliferation of human osteoblast-like MG 63 cells, and promoted the alignment of these cells along the lamellar structures. Similar alignment was observed in human osteoblast-like Saos-2 cells and in human dermal fibroblasts. Type I collagen fibers produced by Saos-2 cells and fibroblasts were also oriented along the lamellar structures. These structures increased the activity of alkaline phosphatase in Saos-2 cells. Carbon coatings also supported adhesion and growth of vascular endothelial and smooth muscle cells, particularly flatter non-heated carbon films. On these films, the continuity of the endothelial cell layer was better than on heat-treated lamellar surfaces. Heat-treated carbon-coated PLLA is therefore more suitable for bone and skin tissue engineering, while carbon-coated PLLA without heating is more appropriate for vascular tissue engineering.
650    _2
$a uhlík $x chemie $7 D002244
650    _2
$a buněčná adheze $x účinky léků $7 D002448
650    _2
$a buněčná diferenciace $x účinky léků $7 D002454
650    _2
$a buněčné linie $7 D002460
650    _2
$a biokompatibilní potahované materiály $x chemie $x farmakologie $7 D020099
650    _2
$a kolagen typu I $x metabolismus $7 D024042
650    _2
$a vysoká teplota $7 D006358
650    _2
$a lidé $7 D006801
650    _2
$a testování materiálů $7 D008422
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a povrchové vlastnosti $7 D013499
650    12
$a tkáňové inženýrství $7 D023822
655    _2
$a časopisecké články $7 D016428
700    1_
$a Slepičková Kasálková, Nikola $u Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic.
700    1_
$a Slepička, Petr $u Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address: petr.slepicka@vscht.cz.
700    1_
$a Švorčík, Václav $u Department of Solid State Engineering, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic.
700    1_
$a Bačáková, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
773    0_
$w MED00184559 $t Materials science & engineering. C, Materials for biological applications $x 1873-0191 $g Roč. 100, č. - (2019), s. 117-128
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30948046 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014104158 $b ABA008
999    __
$a ok $b bmc $g 1451323 $s 1073213
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 100 $c - $d 117-128 $e 20190228 $i 1873-0191 $m Materials science & engineering. C, Materials for biological applications $n Mater Sci Eng C Mater Biol Appl $x MED00184559
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...