-
Je něco špatně v tomto záznamu ?
Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche
PA. Bulzu, AŞ. Andrei, MM. Salcher, M. Mehrshad, K. Inoue, H. Kandori, O. Beja, R. Ghai, HL. Banciu,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- Archaea klasifikace genetika metabolismus MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- genom archeí genetika MeSH
- metabolické sítě a dráhy MeSH
- molekulární evoluce MeSH
- rhodopsiny mikrobiální klasifikace genetika MeSH
- RNA ribozomální genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Recent advances in phylogenomic analyses and increased genomic sampling of uncultured prokaryotic lineages have brought compelling evidence in support of the emergence of eukaryotes from within the archaeal domain of life (eocyte hypothesis)1,2. The discovery of Asgardarchaeota and its supposed position at the base of the eukaryotic tree of life3,4 provided cues about the long-awaited identity of the eocytic lineage from which the nucleated cells (Eukaryota) emerged. While it is apparent that Asgardarchaeota encode a plethora of eukaryotic-specific proteins (the highest number identified yet in prokaryotes)5, the lack of genomic information and metabolic characterization has precluded inferences about their lifestyles and the metabolic landscape that favoured the emergence of the protoeukaryote ancestor. Here, we use advanced phylogenetic analyses for inferring the deep ancestry of eukaryotes, and genome-scale metabolic reconstructions for shedding light on the metabolic milieu of Asgardarchaeota. In doing so, we: (1) show that Heimdallarchaeia (the closest eocytic lineage to eukaryotes to date) are likely to have a microoxic niche, based on their genomic potential, with aerobic metabolic pathways that are unique among Archaea (that is, the kynurenine pathway); (2) provide evidence of mixotrophy within Asgardarchaeota; and (3) describe a previously unknown family of rhodopsins encoded within the recovered genomes.
Department of Life Science and Applied Chemistry Nagoya Institute of Technology Nagoya Japan
Faculty of Biology Technion Israel Institute of Technology Haifa Israel
The Institute for Solid State Physics The University of Tokyo Kashiwa Japan
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034670
- 003
- CZ-PrNML
- 005
- 20191015124205.0
- 007
- ta
- 008
- 191007s2019 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41564-019-0404-y $2 doi
- 035 __
- $a (PubMed)30936485
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Bulzu, Paul-Adrian $u Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania.
- 245 10
- $a Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche / $c PA. Bulzu, AŞ. Andrei, MM. Salcher, M. Mehrshad, K. Inoue, H. Kandori, O. Beja, R. Ghai, HL. Banciu,
- 520 9_
- $a Recent advances in phylogenomic analyses and increased genomic sampling of uncultured prokaryotic lineages have brought compelling evidence in support of the emergence of eukaryotes from within the archaeal domain of life (eocyte hypothesis)1,2. The discovery of Asgardarchaeota and its supposed position at the base of the eukaryotic tree of life3,4 provided cues about the long-awaited identity of the eocytic lineage from which the nucleated cells (Eukaryota) emerged. While it is apparent that Asgardarchaeota encode a plethora of eukaryotic-specific proteins (the highest number identified yet in prokaryotes)5, the lack of genomic information and metabolic characterization has precluded inferences about their lifestyles and the metabolic landscape that favoured the emergence of the protoeukaryote ancestor. Here, we use advanced phylogenetic analyses for inferring the deep ancestry of eukaryotes, and genome-scale metabolic reconstructions for shedding light on the metabolic milieu of Asgardarchaeota. In doing so, we: (1) show that Heimdallarchaeia (the closest eocytic lineage to eukaryotes to date) are likely to have a microoxic niche, based on their genomic potential, with aerobic metabolic pathways that are unique among Archaea (that is, the kynurenine pathway); (2) provide evidence of mixotrophy within Asgardarchaeota; and (3) describe a previously unknown family of rhodopsins encoded within the recovered genomes.
- 650 _2
- $a aerobióza $7 D000332
- 650 _2
- $a anaerobióza $7 D000693
- 650 _2
- $a Archaea $x klasifikace $x genetika $x metabolismus $7 D001105
- 650 _2
- $a ekosystém $7 D017753
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a genom archeí $x genetika $7 D020745
- 650 _2
- $a metabolické sítě a dráhy $7 D053858
- 650 12
- $a fylogeneze $7 D010802
- 650 _2
- $a RNA ribozomální $x genetika $7 D012335
- 650 _2
- $a rhodopsiny mikrobiální $x klasifikace $x genetika $7 D025604
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Andrei, Adrian-Ştefan $u Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
- 700 1_
- $a Salcher, Michaela M $u Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic. Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.
- 700 1_
- $a Mehrshad, Maliheh $u Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
- 700 1_
- $a Inoue, Keiichi $u The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
- 700 1_
- $a Kandori, Hideki $u Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
- 700 1_
- $a Beja, Oded $u Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel.
- 700 1_
- $a Ghai, Rohit $u Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic. ghai.rohit@gmail.com.
- 700 1_
- $a Banciu, Horia L $u Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania. Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania.
- 773 0_
- $w MED00195029 $t Nature microbiology $x 2058-5276 $g Roč. 4, č. 7 (2019), s. 1129-1137
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30936485 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191015124631 $b ABA008
- 999 __
- $a ok $b bmc $g 1451330 $s 1073220
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 4 $c 7 $d 1129-1137 $e 20190401 $i 2058-5276 $m Nature microbiology $n Nat Microbiol $x MED00195029
- LZP __
- $a Pubmed-20191007