• Je něco špatně v tomto záznamu ?

Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum

R. Ranjbar Choubeh, RBM. Koehorst, D. Bína, PC. Struik, J. Pšenčík, H. van Amerongen,

. 2019 ; 1860 (2) : 147-154. [pub] 20181208

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034864

During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034864
003      
CZ-PrNML
005      
20191010115124.0
007      
ta
008      
191007s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bbabio.2018.12.004 $2 doi
035    __
$a (PubMed)30537470
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Ranjbar Choubeh, Reza $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands.
245    10
$a Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum / $c R. Ranjbar Choubeh, RBM. Koehorst, D. Bína, PC. Struik, J. Pšenčík, H. van Amerongen,
520    9_
$a During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
650    _2
$a fyziologická adaptace $7 D000222
650    _2
$a bakteriochlorofyl A $x fyziologie $7 D025541
650    _2
$a Chlorobi $x fyziologie $7 D019414
650    _2
$a přenos energie $x fyziologie $7 D004735
650    _2
$a fluorescence $7 D005453
650    _2
$a fluorometrie $x metody $7 D005470
650    _2
$a světlosběrné proteinové komplexy $x metabolismus $7 D045342
650    12
$a fotochemie $7 D010777
650    12
$a fotosyntéza $7 D010788
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Koehorst, Rob B M $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
700    1_
$a Bína, David $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
700    1_
$a Struik, Paul C $u Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands.
700    1_
$a Pšenčík, Jakub $u Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
700    1_
$a van Amerongen, Herbert $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands. Electronic address: herbert.vanamerongen@wur.nl.
773    0_
$w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1860, č. 2 (2019), s. 147-154
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30537470 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010115543 $b ABA008
999    __
$a ok $b bmc $g 1451524 $s 1073414
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 1860 $c 2 $d 147-154 $e 20181208 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...