-
Je něco špatně v tomto záznamu ?
Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum
R. Ranjbar Choubeh, RBM. Koehorst, D. Bína, PC. Struik, J. Pšenčík, H. van Amerongen,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Elsevier Open Access Journals
od 1995-02-14 do 2023-04-30
Elsevier Open Archive Journals
od 1995-02-14 do Před 1 rokem
- MeSH
- bakteriochlorofyl A fyziologie MeSH
- Chlorobi fyziologie MeSH
- fluorescence MeSH
- fluorometrie metody MeSH
- fotochemie * MeSH
- fotosyntéza * MeSH
- fyziologická adaptace MeSH
- přenos energie fyziologie MeSH
- světlosběrné proteinové komplexy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
Centre for Crop Systems Analysis Wageningen University Wageningen the Netherlands
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Laboratory of Biophysics Wageningen University Wageningen the Netherlands
MicroSpectroscopy Research Facility Wageningen University Wageningen the Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034864
- 003
- CZ-PrNML
- 005
- 20191010115124.0
- 007
- ta
- 008
- 191007s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbabio.2018.12.004 $2 doi
- 035 __
- $a (PubMed)30537470
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Ranjbar Choubeh, Reza $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands.
- 245 10
- $a Efficiency of excitation energy trapping in the green photosynthetic bacterium Chlorobaculum tepidum / $c R. Ranjbar Choubeh, RBM. Koehorst, D. Bína, PC. Struik, J. Pšenčík, H. van Amerongen,
- 520 9_
- $a During the millions of years of evolution, photosynthetic organisms have adapted to almost all terrestrial and aquatic habitats, although some environments are obviously more suitable for photosynthesis than others. Photosynthetic organisms living in low-light conditions require on the one hand a large light-harvesting apparatus to absorb as many photons as possible. On the other hand, the excitation trapping time scales with the size of the light-harvesting system, and the longer the distance over which the formed excitations have to be transferred, the larger the probability to lose excitations. Therefore a compromise between photon capture efficiency and excitation trapping efficiency needs to be found. Here we report results on the whole cells of the green sulfur bacterium Chlorobaculum tepidum. Its efficiency of excitation energy transfer and charge separation enables the organism to live in environments with very low illumination. Using fluorescence measurements with picosecond resolution, we estimate that despite a rather large size and complex composition of its light-harvesting apparatus, the quantum efficiency of its photochemistry is around ~87% at 20 °C, ~83% at 45 °C, and about ~81% at 77 K when part of the excitation energy is trapped by low-energy bacteriochlorophyll a molecules. The data are evaluated using target analysis, which provides further insight into the functional organization of the low-light adapted photosynthetic apparatus.
- 650 _2
- $a fyziologická adaptace $7 D000222
- 650 _2
- $a bakteriochlorofyl A $x fyziologie $7 D025541
- 650 _2
- $a Chlorobi $x fyziologie $7 D019414
- 650 _2
- $a přenos energie $x fyziologie $7 D004735
- 650 _2
- $a fluorescence $7 D005453
- 650 _2
- $a fluorometrie $x metody $7 D005470
- 650 _2
- $a světlosběrné proteinové komplexy $x metabolismus $7 D045342
- 650 12
- $a fotochemie $7 D010777
- 650 12
- $a fotosyntéza $7 D010788
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Koehorst, Rob B M $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands.
- 700 1_
- $a Bína, David $u Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- 700 1_
- $a Struik, Paul C $u Centre for Crop Systems Analysis, Wageningen University, Wageningen, the Netherlands.
- 700 1_
- $a Pšenčík, Jakub $u Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
- 700 1_
- $a van Amerongen, Herbert $u Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, Wageningen, the Netherlands. Electronic address: herbert.vanamerongen@wur.nl.
- 773 0_
- $w MED00000712 $t Biochimica et biophysica acta. Bioenergetics $x 1879-2650 $g Roč. 1860, č. 2 (2019), s. 147-154
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30537470 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191010115543 $b ABA008
- 999 __
- $a ok $b bmc $g 1451524 $s 1073414
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 1860 $c 2 $d 147-154 $e 20181208 $i 1879-2650 $m Biochimica et biophysica acta. Bioenergetics $n Biochem Biophys Acta $x MED00000712
- LZP __
- $a Pubmed-20191007