• Je něco špatně v tomto záznamu ?

From biotechnology principles to functional and low-cost metallic bionanocatalysts

G. Kratošová, V. Holišová, Z. Konvičková, AP. Ingle, S. Gaikwad, K. Škrlová, A. Prokop, M. Rai, D. Plachá,

. 2019 ; 37 (1) : 154-176. [pub] 20181124

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034884

Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034884
003      
CZ-PrNML
005      
20191011085654.0
007      
ta
008      
191007s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biotechadv.2018.11.012 $2 doi
035    __
$a (PubMed)30481544
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kratošová, Gabriela $u Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic. Electronic address: gabriela.kratosova@vsb.cz.
245    10
$a From biotechnology principles to functional and low-cost metallic bionanocatalysts / $c G. Kratošová, V. Holišová, Z. Konvičková, AP. Ingle, S. Gaikwad, K. Škrlová, A. Prokop, M. Rai, D. Plachá,
520    9_
$a Chemical, physical and mechanical methods of nanomaterial preparation are still regarded as mainstream methods, and the scientific community continues to search for new ways of nanomaterial preparation. The major objective of this review is to highlight the advantages of using green chemistry and bionanotechnology in the preparation of functional low-cost catalysts. Bionanotechnology employs biological principles and processes connected with bio-phase participation in both design and development of nano-structures and nano-materials, and the biosynthesis of metallic nanoparticles is becoming even more popular due to; (i) economic and ecologic effectiveness, (ii) simple one-step nanoparticle formation, stabilisation and biomass support and (iii) the possibility of bio-waste valorisation. Although it is quite difficult to determine the precise mechanisms in particular biosynthesis and research is performed with some risk in all trial and error experiments, there is also the incentive of understanding the exact mechanisms involved. This enables further optimisation of bionanoparticle preparation and increases their application potential. Moreover, it is very important in bionanotechnological procedures to ensure repeatability of the methods related to the recognised reaction mechanisms. This review, therefore, summarises the current state of nanoparticle biosynthesis. It then demonstrates the application of biosynthesised metallic nanoparticles in heterogeneous catalysis by identifying the many examples where bionanocatalysts have been successfully applied in model reactions. These describe the degradation of organic dyes, the reduction of aromatic nitro compounds, dehalogenation of chlorinated aromatic compounds, reduction of Cr(VI) and the synthesis of important commercial chemicals. To ensure sustainability, it is important to focus on nanomaterials that are capable of maintaining the important green chemistry principles directly from design inception to ultimate application.
650    _2
$a biotechnologie $x trendy $7 D001709
650    12
$a katalýza $7 D002384
650    _2
$a technologie zelené chemie $x trendy $7 D055772
650    _2
$a kovové nanočástice $x chemie $7 D053768
650    _2
$a nanostruktury $x chemie $7 D049329
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Holišová, Veronika $u Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
700    1_
$a Konvičková, Zuzana $u ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
700    1_
$a Ingle, Avinash P $u Department of Biotechnology, Lorena School of Engineering, University of Sao Paulo, Lorena, Brazil.
700    1_
$a Gaikwad, Swapnil $u Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, India.
700    1_
$a Škrlová, Kateřina $u Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
700    1_
$a Prokop, Aleš $u Chemical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
700    1_
$a Rai, Mahendra $u Department of Biotechnology, Nanobiotechnology Laboratory, S.G.B. Amravati University, Amravati 444602, Maharashtra, India.
700    1_
$a Plachá, Daniela $u Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic; ENET Centre, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, Ostrava, Czech Republic.
773    0_
$w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 37, č. 1 (2019), s. 154-176
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30481544 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011090114 $b ABA008
999    __
$a ok $b bmc $g 1451544 $s 1073434
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 37 $c 1 $d 154-176 $e 20181124 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace