-
Something wrong with this record ?
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts
P. Angelisová, O. Ballek, J. Sýkora, O. Benada, T. Čajka, J. Pokorná, D. Pinkas, V. Hořejší,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Anisotropy MeSH
- Cell Membrane chemistry MeSH
- Cholesterol chemistry MeSH
- Detergents chemistry MeSH
- Chromatography, Gel MeSH
- Jurkat Cells MeSH
- Humans MeSH
- Lipid Bilayers chemistry MeSH
- Lipids chemistry MeSH
- Maleates chemistry MeSH
- Fatty Acids chemistry MeSH
- Membrane Microdomains chemistry MeSH
- Membrane Proteins chemistry MeSH
- Membranes, Artificial MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Polymers chemistry MeSH
- Scattering, Radiation MeSH
- Solubility MeSH
- Styrene chemistry MeSH
- Light MeSH
- T-Lymphocytes cytology MeSH
- Ultracentrifugation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250 nm) than those containing non-raft proteins (<20 nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different - the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.
Institute of Physiology of the Czech Academy of Sciences Vídeňská 1083 142 20 Praha 4 Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034892
- 003
- CZ-PrNML
- 005
- 20191010115257.0
- 007
- ta
- 008
- 191007s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbamem.2018.08.006 $2 doi
- 035 __
- $a (PubMed)30463696
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Angelisová, Pavla $u Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic.
- 245 14
- $a The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts / $c P. Angelisová, O. Ballek, J. Sýkora, O. Benada, T. Čajka, J. Pokorná, D. Pinkas, V. Hořejší,
- 520 9_
- $a An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250 nm) than those containing non-raft proteins (<20 nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different - the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a anizotropie $7 D016880
- 650 _2
- $a buněčná membrána $x chemie $7 D002462
- 650 _2
- $a cholesterol $x chemie $7 D002784
- 650 _2
- $a gelová chromatografie $7 D002850
- 650 _2
- $a detergenty $x chemie $7 D003902
- 650 _2
- $a mastné kyseliny $x chemie $7 D005227
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a Jurkat buňky $7 D019169
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a lipidové dvojvrstvy $x chemie $7 D008051
- 650 _2
- $a lipidy $x chemie $7 D008055
- 650 _2
- $a maleáty $x chemie $7 D008298
- 650 _2
- $a membránové mikrodomény $x chemie $7 D021962
- 650 _2
- $a membránové proteiny $x chemie $7 D008565
- 650 _2
- $a membrány umělé $7 D008567
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a radiační rozptyl $7 D012542
- 650 _2
- $a rozpustnost $7 D012995
- 650 _2
- $a styren $x chemie $7 D020058
- 650 _2
- $a T-lymfocyty $x cytologie $7 D013601
- 650 _2
- $a ultracentrifugace $7 D014461
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ballek, Ondřej $u Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic.
- 700 1_
- $a Sýkora, Jan $u J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
- 700 1_
- $a Benada, Oldřich $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha, 4, Czech Republic.
- 700 1_
- $a Čajka, Tomáš $u Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic.
- 700 1_
- $a Pokorná, Jana $u Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic.
- 700 1_
- $a Pinkas, Dominik $u Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic.
- 700 1_
- $a Hořejší, Václav $u Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Praha 4, Czech Republic. Electronic address: vaclav.horejsi@img.cas.cz.
- 773 0_
- $w MED00000713 $t Biochimica et biophysica acta. Biomembranes $x 1879-2642 $g Roč. 1861, č. 1 (2019), s. 130-141
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30463696 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191010115716 $b ABA008
- 999 __
- $a ok $b bmc $g 1451552 $s 1073442
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 1861 $c 1 $d 130-141 $e 20180814 $i 1879-2642 $m Biochimica et biophysica acta. Biomembranes $n Biochem Biophys Acta $x MED00000713
- LZP __
- $a Pubmed-20191007