• Je něco špatně v tomto záznamu ?

Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems

S. Papacek, J. Jablonsky, K. Petera,

. 2018 ; 12 (Suppl 5) : 93. [pub] 20181120

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034893

BACKGROUND: Photosynthetic microalgae have been in the spotlight of biotechnological production (biofuels, lipids, etc), however, current barriers in mass cultivation of microalgae are limiting its successful industrialization. Therefore, a mathematical model integrating both the biological and hydrodynamical parts of the cultivation process may improve our understanding of relevant phenomena, leading to further optimization of the microalgae cultivation. RESULTS: We introduce a unified multidisciplinary simulation tool for microalgae culture systems, particularly the photobioreactors. Our approach describes changes of cell growth determined by dynamics of heterogeneous environmental conditions such as irradiation and mixing of the culture. Presented framework consists of (i) a simplified model of microalgae growth in a culture system (the advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition), (ii) the fluid dynamics (Navier-Stokes equations), and (iii) the irradiance field description (Beer-Lambert law). To validate the method, a simple case study leading to hydrodynamically induced fluctuating light conditions was chosen. The integration of computational fluid dynamics (ANSYS Fluent) revealed the inner property of the system, the flashing light enhancement phenomenon, known from experiments. CONCLUSION: Our physically accurate model of microalgae culture naturally exhibits features of real system, can be applied to any geometry of microalgae mass cultivation and thus is suitable for biotechnological applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034893
003      
CZ-PrNML
005      
20191029160043.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12918-018-0611-9 $2 doi
035    __
$a (PubMed)30458763
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Papacek, Stepan $u Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136, 373 33 Nové Hrady, Czech Republic.
245    10
$a Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems / $c S. Papacek, J. Jablonsky, K. Petera,
520    9_
$a BACKGROUND: Photosynthetic microalgae have been in the spotlight of biotechnological production (biofuels, lipids, etc), however, current barriers in mass cultivation of microalgae are limiting its successful industrialization. Therefore, a mathematical model integrating both the biological and hydrodynamical parts of the cultivation process may improve our understanding of relevant phenomena, leading to further optimization of the microalgae cultivation. RESULTS: We introduce a unified multidisciplinary simulation tool for microalgae culture systems, particularly the photobioreactors. Our approach describes changes of cell growth determined by dynamics of heterogeneous environmental conditions such as irradiation and mixing of the culture. Presented framework consists of (i) a simplified model of microalgae growth in a culture system (the advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition), (ii) the fluid dynamics (Navier-Stokes equations), and (iii) the irradiance field description (Beer-Lambert law). To validate the method, a simple case study leading to hydrodynamically induced fluctuating light conditions was chosen. The integration of computational fluid dynamics (ANSYS Fluent) revealed the inner property of the system, the flashing light enhancement phenomenon, known from experiments. CONCLUSION: Our physically accurate model of microalgae culture naturally exhibits features of real system, can be applied to any geometry of microalgae mass cultivation and thus is suitable for biotechnological applications.
650    _2
$a počítačová simulace $7 D003198
650    12
$a kultivační techniky $7 D046508
650    12
$a hydrodynamika $7 D057446
650    _2
$a mikrořasy $x růst a vývoj $x fyziologie $x účinky záření $7 D058086
650    _2
$a biologické modely $7 D008954
650    12
$a fotosyntéza $7 D010788
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jablonsky, Jiri $u Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zámek 136, 373 33 Nové Hrady, Czech Republic. jiri.jablonsky@gmail.com.
700    1_
$a Petera, Karel $u Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, Prague, 160 00, Czech Republic.
773    0_
$w MED00200576 $t BMC systems biology $x 1752-0509 $g Roč. 12, Suppl 5 (2018), s. 93
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30458763 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191029160522 $b ABA008
999    __
$a ok $b bmc $g 1451553 $s 1073443
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 12 $c Suppl 5 $d 93 $e 20181120 $i 1752-0509 $m BMC systems biology $n BMC Syst Biol $x MED00200576
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...