• Je něco špatně v tomto záznamu ?

Magnesium Stable Isotope Fractionation on a Cellular Level Explored by Cyanobacteria and Black Fungi with Implications for Higher Plants

R. Pokharel, R. Gerrits, JA. Schuessler, PJ. Frings, R. Sobotka, AA. Gorbushina, F. von Blanckenburg,

. 2018 ; 52 (21) : 12216-12224. [pub] 20181026

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19034952

In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is -0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (-2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (-0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19034952
003      
CZ-PrNML
005      
20191008094715.0
007      
ta
008      
191007s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acs.est.8b02238 $2 doi
035    __
$a (PubMed)30351034
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Pokharel, Rasesh $u GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany. Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany.
245    10
$a Magnesium Stable Isotope Fractionation on a Cellular Level Explored by Cyanobacteria and Black Fungi with Implications for Higher Plants / $c R. Pokharel, R. Gerrits, JA. Schuessler, PJ. Frings, R. Sobotka, AA. Gorbushina, F. von Blanckenburg,
520    9_
$a In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is -0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (-2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (-0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants.
650    _2
$a chemická frakcionace $7 D005591
650    _2
$a izotopy $7 D007554
650    12
$a hořčík $7 D008274
650    12
$a Nostoc $7 D046937
650    _2
$a rostliny $7 D010944
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gerrits, Ruben $u Department 4, Materials & Environment , BAM Federal Institute for Materials Research & Testing , 12205 Berlin , Germany. Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , 14195 Berlin , Germany.
700    1_
$a Schuessler, Jan A $u GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany.
700    1_
$a Frings, Patrick J $u GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany.
700    1_
$a Sobotka, Roman $u Institute of Microbiology , Centre Algatech , 379 81 Třebon , Czech Republic.
700    1_
$a Gorbushina, Anna A $u Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany. Department 4, Materials & Environment , BAM Federal Institute for Materials Research & Testing , 12205 Berlin , Germany. Department of Biology, Chemistry and Pharmacy , Freie Universität Berlin , 14195 Berlin , Germany.
700    1_
$a von Blanckenburg, Friedhelm $u GFZ German Research Centre for Geosciences , Section 3.3, Earth Surface Geochemistry, Telegrafenberg, 14473 Potsdam , Germany. Institute of Geological Sciences , Freie Universität Berlin , 12249 Berlin , Germany.
773    0_
$w MED00001559 $t Environmental science & technology $x 1520-5851 $g Roč. 52, č. 21 (2018), s. 12216-12224
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30351034 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191008095131 $b ABA008
999    __
$a ok $b bmc $g 1451612 $s 1073502
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 52 $c 21 $d 12216-12224 $e 20181026 $i 1520-5851 $m Environmental science & technology $n Environ Sci Technol $x MED00001559
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...