-
Je něco špatně v tomto záznamu ?
Similarity Detection Between Virtual Patients and Medical Curriculum Using R
M. Komenda, J. Ščavnický, P. Růžičková, M. Karolyi, P. Štourač, D. Schwarz,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
PubMed
30306941
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kurikulum * MeSH
- lidé MeSH
- osoby simulující pacienta ve výuce * MeSH
- software * MeSH
- studium lékařství * MeSH
- učení MeSH
- virtuální realita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This paper presents the domain of information sciences, applied informatics and biomedical engineering, proposing to develop methods for an automated detection of similarities between two particular virtual learning environments - virtual patients at Akutne.cz and the OPTIMED curriculum management system - in order to provide support to clinically oriented stages of medical and healthcare studies. For this purpose, the authors used large amounts of text-based data collected by the system for mapping medical curricula and through the system for virtual patient authoring and delivery. The proposed text-mining algorithm for an automated detection of links between content entities of these systems has been successfully implemented by the means of a web-based toolbox.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19034970
- 003
- CZ-PrNML
- 005
- 20200901091553.0
- 007
- ta
- 008
- 191007s2018 ne f 000 0|eng||
- 009
- AR
- 035 __
- $a (PubMed)30306941
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Komenda, Martin $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic.
- 245 10
- $a Similarity Detection Between Virtual Patients and Medical Curriculum Using R / $c M. Komenda, J. Ščavnický, P. Růžičková, M. Karolyi, P. Štourač, D. Schwarz,
- 520 9_
- $a This paper presents the domain of information sciences, applied informatics and biomedical engineering, proposing to develop methods for an automated detection of similarities between two particular virtual learning environments - virtual patients at Akutne.cz and the OPTIMED curriculum management system - in order to provide support to clinically oriented stages of medical and healthcare studies. For this purpose, the authors used large amounts of text-based data collected by the system for mapping medical curricula and through the system for virtual patient authoring and delivery. The proposed text-mining algorithm for an automated detection of links between content entities of these systems has been successfully implemented by the means of a web-based toolbox.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a kurikulum $7 D003479
- 650 12
- $a studium lékařství $7 D004501
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a učení $7 D007858
- 650 12
- $a osoby simulující pacienta ve výuce $7 D016544
- 650 12
- $a software $7 D012984
- 650 _2
- $a virtuální realita $7 D000076142
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Ščavnický, Jakub $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic.
- 700 1_
- $a Růžičková, Petra $7 xx0251417 $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic.
- 700 1_
- $a Karolyi, Matěj $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic.
- 700 1_
- $a Štourač, Petr $u Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Czech Republic.
- 700 1_
- $a Schwarz, Daniel $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Czech Republic.
- 773 0_
- $w MED00180836 $t Studies in health technology and informatics $x 1879-8365 $g Roč. 255, č. - (2018), s. 222-226
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30306941 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20200901091550 $b ABA008
- 999 __
- $a ok $b bmc $g 1451630 $s 1073520
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 255 $c - $d 222-226 $e - $i 1879-8365 $m Studies in health technology and informatics $n Stud Health Technol Inform $x MED00180836
- LZP __
- $a Pubmed-20191007