• Je něco špatně v tomto záznamu ?

Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength

L. Hympanova, MGMC. Mori da Cunha, R. Rynkevic, RA. Wach, AK. Olejnik, PYW. Dankers, B. Arts, T. Mes, AW. Bosman, M. Albersen, J. Deprest,

. 2018 ; 88 (-) : 431-441. [pub] 20180821

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035017

PURPOSE: Electrospun meshes mimic the extracellular matrix, which may improve their integration. We aimed to compare polycaprolactone (PCL) modified with ureidopyrimidinone (UPy) electrospun meshes with ultra-lightweight polypropylene (PP; Restorelle) reference textile meshes for in vivo compliance. We chose UPy-PCL because we have shown it does not compromise biomechanical properties of native tissue, and because it potentially can be bioactivated. METHODS: We performed ex vivo biomechanical cyclic loading in wet conditions and in vivo overlay of full-thickness abdominal wall defects in rats and rabbits. Animals were sacrificed at 7, 42 and 54 days (rats; n = 6/group) and 30 and 90 days (rabbits; n = 3/group). Outcomes were herniation, mesh degradation and mesh dimensions, explant compliance and histology. High failure rates prompted us to provide additional material strength by increasing fiber diameter and mesh thickness, which was further tested in rabbits as a biomechanically more challenging model. RESULTS: Compliance was tested in animals without herniation. In both species, UPy-PCL-explants were as compliant as native tissue. In rats, PP-explants were stiffer. Contraction was similar in UPy-PCL and PP-explants. However, UPy-PCL-meshes macroscopically degraded from 30 days onwards, coinciding with herniation in up to half of animals. Increased fiber and mesh thickness did not improve outcome. Degradation of UPy-PCL is associated with an abundance of foreign body giant cells until UPy-PCL disappears. CONCLUSION: Abdominal wall reconstruction with electrospun UPy-PCL meshes failed in 50%. Degradation coincided with a transient vigorous foreign body reaction. Non-failing UPy-PCL-explants were as compliant as native tissue. Despite that, the high failure rate forces us to explore electrospun meshes based on other polymers.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035017
003      
CZ-PrNML
005      
20191014125552.0
007      
ta
008      
191007s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmbbm.2018.08.026 $2 doi
035    __
$a (PubMed)30216933
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Hympanova, Lucie $u Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Institute for the Care of Mother and Child, Third Faculty of Medicine, Charles University, Podolské nábřeží 157/36, 147 00 Prague, Czech Republic. Electronic address: lucie.hympanova@upmd.eu.
245    10
$a Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength / $c L. Hympanova, MGMC. Mori da Cunha, R. Rynkevic, RA. Wach, AK. Olejnik, PYW. Dankers, B. Arts, T. Mes, AW. Bosman, M. Albersen, J. Deprest,
520    9_
$a PURPOSE: Electrospun meshes mimic the extracellular matrix, which may improve their integration. We aimed to compare polycaprolactone (PCL) modified with ureidopyrimidinone (UPy) electrospun meshes with ultra-lightweight polypropylene (PP; Restorelle) reference textile meshes for in vivo compliance. We chose UPy-PCL because we have shown it does not compromise biomechanical properties of native tissue, and because it potentially can be bioactivated. METHODS: We performed ex vivo biomechanical cyclic loading in wet conditions and in vivo overlay of full-thickness abdominal wall defects in rats and rabbits. Animals were sacrificed at 7, 42 and 54 days (rats; n = 6/group) and 30 and 90 days (rabbits; n = 3/group). Outcomes were herniation, mesh degradation and mesh dimensions, explant compliance and histology. High failure rates prompted us to provide additional material strength by increasing fiber diameter and mesh thickness, which was further tested in rabbits as a biomechanically more challenging model. RESULTS: Compliance was tested in animals without herniation. In both species, UPy-PCL-explants were as compliant as native tissue. In rats, PP-explants were stiffer. Contraction was similar in UPy-PCL and PP-explants. However, UPy-PCL-meshes macroscopically degraded from 30 days onwards, coinciding with herniation in up to half of animals. Increased fiber and mesh thickness did not improve outcome. Degradation of UPy-PCL is associated with an abundance of foreign body giant cells until UPy-PCL disappears. CONCLUSION: Abdominal wall reconstruction with electrospun UPy-PCL meshes failed in 50%. Degradation coincided with a transient vigorous foreign body reaction. Non-failing UPy-PCL-explants were as compliant as native tissue. Despite that, the high failure rate forces us to explore electrospun meshes based on other polymers.
650    _2
$a břišní stěna $x chirurgie $7 D034861
650    _2
$a zvířata $7 D000818
650    12
$a elektřina $7 D004560
650    _2
$a testování materiálů $7 D008422
650    12
$a mechanické jevy $7 D055595
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a pyrimidinony $x chemie $7 D011744
650    _2
$a králíci $7 D011817
650    _2
$a krysa rodu Rattus $7 D051381
650    12
$a chirurgické síťky $7 D013526
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mori da Cunha, Marina Gabriela Monteiro Carvalho $u Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium. Electronic address: marina.cunha@kuleuven.be.
700    1_
$a Rynkevic, Rita $u Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; INEGI, Faculdade de Engenharia da Universidade do Porto, Universidade do Porto, Rua Dr. Roberto Frias, 400 4200-465 Porto, Portugal. Electronic address: rita.rynkevic@kuleuven.be.
700    1_
$a Wach, Radoslaw A $u Institute of Applied Radiation Chemistry, Faculty of Chemistry, Technical University of Lodz, Stefana Żeromskiego 116, 90-924 Lodz, Poland. Electronic address: wach@mitr.p.lodz.pl.
700    1_
$a Olejnik, Alicja K $u Institute of Applied Radiation Chemistry, Faculty of Chemistry, Technical University of Lodz, Stefana Żeromskiego 116, 90-924 Lodz, Poland. Electronic address: olejnik@mitr.p.lodz.pl.
700    1_
$a Dankers, Patricia Y W $u Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Electronic address: P.Y.W.Dankers@tue.nl.
700    1_
$a Arts, Boris $u Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Electronic address: b.arts@student.tue.nl.
700    1_
$a Mes, Tristan $u SupraPolix BV, Horsten 1, 5612 AX Eindhoven, the Netherlands. Electronic address: mes@suprapolix.com.
700    1_
$a Bosman, Anton W $u SupraPolix BV, Horsten 1, 5612 AX Eindhoven, the Netherlands. Electronic address: bosman@suprapolix.com.
700    1_
$a Albersen, Maarten $u Department of Urology, University Hospitals Leuven, UZ Herestraat 49 - box 7003 41, 3000 Leuven, Belgium. Electronic address: maarten.albersen@uzleuven.be.
700    1_
$a Deprest, Jan $u Centre for Surgical Technologies, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Department of Development and Regeneration, Woman and Child, Group Biomedical Sciences, KU Leuven, UZ Herestraat 49 - box 7003, 3000 Leuven, Belgium; Pelvic Floor Unit, University Hospitals KU Leuven, UZ Herestraat 49 - box 7003 06, 3000 Leuven, Belgium. Electronic address: Jan.Deprest@uzleuven.be.
773    0_
$w MED00166961 $t Journal of the mechanical behavior of biomedical materials $x 1878-0180 $g Roč. 88, č. - (2018), s. 431-441
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30216933 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014130017 $b ABA008
999    __
$a ok $b bmc $g 1451677 $s 1073567
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 88 $c - $d 431-441 $e 20180821 $i 1878-0180 $m Journal of the mechanical behavior of biomedical materials $n J Mech Behav Biomed Mater $x MED00166961
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace