Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum

A. Estrada-Peña, M. Villar, S. Artigas-Jerónimo, V. López, P. Alberdi, A. Cabezas-Cruz, J. de la Fuente,

. 2018 ; 8 (-) : 265. [pub] 20180803

Language English Country Switzerland

Document type Journal Article, Research Support, Non-U.S. Gov't

One of the major challenges in modern biology is the use of large omics datasets for the characterization of complex processes such as cell response to infection. These challenges are even bigger when analyses need to be performed for comparison of different species including model and non-model organisms. To address these challenges, the graph theory was applied to characterize the tick vector and human cell protein response to infection with Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. A network of interacting proteins and cell processes clustered in biological pathways, and ranked with indexes representing the topology of the proteome was prepared. The results demonstrated that networks of functionally interacting proteins represented in both infected and uninfected cells can describe the complete set of host cell processes and metabolic pathways, providing a deeper view of the comparative host cell response to pathogen infection. The results demonstrated that changes in the tick proteome were driven by modifications in protein representation in response to A. phagocytophilum infection. Pathogen infection had a higher impact on tick than human proteome. Since most proteins were linked to several cell processes, the changes in protein representation affected simultaneously different biological pathways. The method allowed discerning cell processes that were affected by pathogen infection from those that remained unaffected. The results supported that human neutrophils but not tick cells limit pathogen infection through differential representation of ras-related proteins. This methodological approach could be applied to other host-pathogen models to identify host derived key proteins in response to infection that may be used to develop novel control strategies for arthropod-borne pathogens.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035062
003      
CZ-PrNML
005      
20191011112808.0
007      
ta
008      
191007s2018 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fcimb.2018.00265 $2 doi
035    __
$a (PubMed)30123779
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Estrada-Peña, Agustín $u Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
245    10
$a Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum / $c A. Estrada-Peña, M. Villar, S. Artigas-Jerónimo, V. López, P. Alberdi, A. Cabezas-Cruz, J. de la Fuente,
520    9_
$a One of the major challenges in modern biology is the use of large omics datasets for the characterization of complex processes such as cell response to infection. These challenges are even bigger when analyses need to be performed for comparison of different species including model and non-model organisms. To address these challenges, the graph theory was applied to characterize the tick vector and human cell protein response to infection with Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. A network of interacting proteins and cell processes clustered in biological pathways, and ranked with indexes representing the topology of the proteome was prepared. The results demonstrated that networks of functionally interacting proteins represented in both infected and uninfected cells can describe the complete set of host cell processes and metabolic pathways, providing a deeper view of the comparative host cell response to pathogen infection. The results demonstrated that changes in the tick proteome were driven by modifications in protein representation in response to A. phagocytophilum infection. Pathogen infection had a higher impact on tick than human proteome. Since most proteins were linked to several cell processes, the changes in protein representation affected simultaneously different biological pathways. The method allowed discerning cell processes that were affected by pathogen infection from those that remained unaffected. The results supported that human neutrophils but not tick cells limit pathogen infection through differential representation of ras-related proteins. This methodological approach could be applied to other host-pathogen models to identify host derived key proteins in response to infection that may be used to develop novel control strategies for arthropod-borne pathogens.
650    _2
$a Anaplasma phagocytophilum $x růst a vývoj $7 D041081
650    _2
$a anaplasmóza $x patologie $7 D000712
650    _2
$a zvířata $7 D000818
650    12
$a členovci - vektory $7 D001179
650    _2
$a biologické jevy $7 D001686
650    _2
$a buněčné linie $7 D002460
650    12
$a interakce hostitele a patogenu $7 D054884
650    _2
$a lidé $7 D006801
650    12
$a teoretické modely $7 D008962
650    _2
$a mapy interakcí proteinů $7 D060066
650    _2
$a proteiny $x analýza $7 D011506
650    _2
$a proteom $x analýza $7 D020543
650    _2
$a klíšťata $7 D013987
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Villar, Margarita $u SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain.
700    1_
$a Artigas-Jerónimo, Sara $u SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain.
700    1_
$a López, Vladimir $u SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain.
700    1_
$a Alberdi, Pilar $u SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain.
700    1_
$a Cabezas-Cruz, Alejandro $u UMR Biologie Moléculaire et Immunologie Parasitaires (BIPAR), INRA, Agence Nationale de Sécurité Sanitairede l'Alimentation, de l'Environnement et du Travail (ANSES), Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France. Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia. Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia.
700    1_
$a de la Fuente, José $u Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain. Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
773    0_
$w MED00182987 $t Frontiers in cellular and infection microbiology $x 2235-2988 $g Roč. 8, č. - (2018), s. 265
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30123779 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011113228 $b ABA008
999    __
$a ok $b bmc $g 1451722 $s 1073612
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 8 $c - $d 265 $e 20180803 $i 2235-2988 $m Frontiers in cellular and infection microbiology $n Front Cell Infect Microbiol $x MED00182987
LZP    __
$a Pubmed-20191007

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...