• Je něco špatně v tomto záznamu ?

Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG

L. Kuhlmann, P. Karoly, DR. Freestone, BH. Brinkmann, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, S. Dobson, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, C. Reuben,...

. 2018 ; 141 (9) : 2619-2630. [pub] 20180901

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035078

Grantová podpora
U24 NS063930 NINDS NIH HHS - United States
UH2 NS095495 NINDS NIH HHS - United States
R01 NS099348 NINDS NIH HHS - United States
K01 ES025436 NIEHS NIH HHS - United States
R01 NS092882 NINDS NIH HHS - United States
R01 NS079533 NINDS NIH HHS - United States
R01 NS099348 NINDS NIH HHS - United States

Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.

Areté Associates 1550 Crystal Drive Suite 703 Arlington VA USA

California USA

Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia

Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia Brain Dynamics Lab Centre for Human Psychopharmacology Swinburne University of Technology Hawthorn VIC Australia

Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia NeuroEngineering Lab Department of Biomedical Engineering The University of Melbourne Parkville VIC Australia

Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia NeuroEngineering Lab Department of Biomedical Engineering The University of Melbourne Parkville VIC Australia Brain Dynamics Lab Centre for Human Psychopharmacology Swinburne University of Technology Hawthorn VIC Australia

Department of Neuroscience Brown University Providence Rhode Island USA Center for Neurorestoration and Neurotechnology U S Department of Veterans Affairs Providence Rhode Island USA

Department of Physics National University of Singapore Singapore

Grenoble France

Irish Centre for Fetal and Neonatal Translational Research University College Cork Cork Ireland

Kyiv Ukraine

Mayo Systems Electrophysiology Laboratory Departments of Neurology and Biomedical Engineering Mayo Clinic Rochester MN USA

Minnesota USA

Prague Czech Republic

Redondo Beach CA USA

Solverworld Suite 140 1337 Mass Ave Arlington Massachusetts USA

UCL Ear Institute 332 Gray's Inn Road London UK

University of Pennsylvania Penn Center for Neuroengineering and Therapeutics Philadelphia PA USA

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035078
003      
CZ-PrNML
005      
20191011090544.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/brain/awy210 $2 doi
035    __
$a (PubMed)30101347
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kuhlmann, Levin $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia. Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia.
245    10
$a Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG / $c L. Kuhlmann, P. Karoly, DR. Freestone, BH. Brinkmann, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, S. Dobson, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, C. Reuben, G. Worrell, B. Litt, DTJ. Liley, DB. Grayden, MJ. Cook,
520    9_
$a Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a mozek $x diagnostické zobrazování $x patofyziologie $7 D001921
650    _2
$a crowdsourcing $x metody $7 D063045
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a epilepsie $x patofyziologie $7 D004827
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a předpověď $x metody $7 D005544
650    _2
$a lidé $7 D006801
650    _2
$a lidé středního věku $7 D008875
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a prospektivní studie $7 D011446
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a záchvaty $x patofyziologie $7 D012640
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Karoly, Philippa $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia.
700    1_
$a Freestone, Dean R $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia.
700    1_
$a Brinkmann, Benjamin H $u Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Temko, Andriy $u Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland.
700    1_
$a Barachant, Alexandre $u Grenoble, France.
700    1_
$a Li, Feng $u Minnesota, USA.
700    1_
$a Titericz, Gilberto $u California, USA.
700    1_
$a Lang, Brian W $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
700    1_
$a Lavery, Daniel $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
700    1_
$a Roman, Kelly $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
700    1_
$a Broadhead, Derek $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
700    1_
$a Dobson, Scott $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
700    1_
$a Jones, Gareth $u UCL Ear Institute, 332 Gray's Inn Road, London, UK.
700    1_
$a Tang, Qingnan $u Department of Physics, National University of Singapore, Singapore.
700    1_
$a Ivanenko, Irina $u Kyiv, Ukraine.
700    1_
$a Panichev, Oleg $u Kyiv, Ukraine.
700    1_
$a Proix, Timothée $u Department of Neuroscience, Brown University, Providence, Rhode Island, USA. Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, USA.
700    1_
$a Náhlík, Michal $u Prague, Czech Republic.
700    1_
$a Grunberg, Daniel B $u Solverworld, Suite 140, 1337 Mass. Ave, Arlington, Massachusetts, USA.
700    1_
$a Reuben, Chip $u Redondo Beach, CA, USA.
700    1_
$a Worrell, Gregory $u Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
700    1_
$a Litt, Brian $u University of Pennsylvania, Penn Center for Neuroengineering and Therapeutics, Philadelphia, PA, USA.
700    1_
$a Liley, David T J $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia.
700    1_
$a Grayden, David B $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia.
700    1_
$a Cook, Mark J $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia.
773    0_
$w MED00009356 $t Brain : a journal of neurology $x 1460-2156 $g Roč. 141, č. 9 (2018), s. 2619-2630
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30101347 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191011091004 $b ABA008
999    __
$a ok $b bmc $g 1451738 $s 1073628
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 141 $c 9 $d 2619-2630 $e 20180901 $i 1460-2156 $m Brain $n Brain $x MED00009356
GRA    __
$a U24 NS063930 $p NINDS NIH HHS $2 United States
GRA    __
$a UH2 NS095495 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS099348 $p NINDS NIH HHS $2 United States
GRA    __
$a K01 ES025436 $p NIEHS NIH HHS $2 United States
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS079533 $p NINDS NIH HHS $2 United States
GRA    __
$a R01 NS099348 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...