-
Je něco špatně v tomto záznamu ?
Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG
L. Kuhlmann, P. Karoly, DR. Freestone, BH. Brinkmann, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, S. Dobson, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, C. Reuben,...
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
U24 NS063930
NINDS NIH HHS - United States
UH2 NS095495
NINDS NIH HHS - United States
R01 NS099348
NINDS NIH HHS - United States
K01 ES025436
NIEHS NIH HHS - United States
R01 NS092882
NINDS NIH HHS - United States
R01 NS079533
NINDS NIH HHS - United States
R01 NS099348
NINDS NIH HHS - United States
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
30101347
DOI
10.1093/brain/awy210
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- crowdsourcing metody MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek diagnostické zobrazování patofyziologie MeSH
- prediktivní hodnota testů MeSH
- předpověď metody MeSH
- prospektivní studie MeSH
- reprodukovatelnost výsledků MeSH
- záchvaty patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
Areté Associates 1550 Crystal Drive Suite 703 Arlington VA USA
Department of Medicine St Vincent's The University of Melbourne Parkville VIC Australia
Department of Physics National University of Singapore Singapore
Irish Centre for Fetal and Neonatal Translational Research University College Cork Cork Ireland
Solverworld Suite 140 1337 Mass Ave Arlington Massachusetts USA
UCL Ear Institute 332 Gray's Inn Road London UK
University of Pennsylvania Penn Center for Neuroengineering and Therapeutics Philadelphia PA USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035078
- 003
- CZ-PrNML
- 005
- 20191011090544.0
- 007
- ta
- 008
- 191007s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/brain/awy210 $2 doi
- 035 __
- $a (PubMed)30101347
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kuhlmann, Levin $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia. Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia.
- 245 10
- $a Epilepsyecosystem.org: crowd-sourcing reproducible seizure prediction with long-term human intracranial EEG / $c L. Kuhlmann, P. Karoly, DR. Freestone, BH. Brinkmann, A. Temko, A. Barachant, F. Li, G. Titericz, BW. Lang, D. Lavery, K. Roman, D. Broadhead, S. Dobson, G. Jones, Q. Tang, I. Ivanenko, O. Panichev, T. Proix, M. Náhlík, DB. Grunberg, C. Reuben, G. Worrell, B. Litt, DTJ. Liley, DB. Grayden, MJ. Cook,
- 520 9_
- $a Accurate seizure prediction will transform epilepsy management by offering warnings to patients or triggering interventions. However, state-of-the-art algorithm design relies on accessing adequate long-term data. Crowd-sourcing ecosystems leverage quality data to enable cost-effective, rapid development of predictive algorithms. A crowd-sourcing ecosystem for seizure prediction is presented involving an international competition, a follow-up held-out data evaluation, and an online platform, Epilepsyecosystem.org, for yielding further improvements in prediction performance. Crowd-sourced algorithms were obtained via the 'Melbourne-University AES-MathWorks-NIH Seizure Prediction Challenge' conducted at kaggle.com. Long-term continuous intracranial electroencephalography (iEEG) data (442 days of recordings and 211 lead seizures per patient) from prediction-resistant patients who had the lowest seizure prediction performances from the NeuroVista Seizure Advisory System clinical trial were analysed. Contestants (646 individuals in 478 teams) from around the world developed algorithms to distinguish between 10-min inter-seizure versus pre-seizure data clips. Over 10 000 algorithms were submitted. The top algorithms as determined by using the contest data were evaluated on a much larger held-out dataset. The data and top algorithms are available online for further investigation and development. The top performing contest entry scored 0.81 area under the classification curve. The performance reduced by only 6.7% on held-out data. Many other teams also showed high prediction reproducibility. Pseudo-prospective evaluation demonstrated that many algorithms, when used alone or weighted by circadian information, performed better than the benchmarks, including an average increase in sensitivity of 1.9 times the original clinical trial sensitivity for matched time in warning. These results indicate that clinically-relevant seizure prediction is possible in a wider range of patients than previously thought possible. Moreover, different algorithms performed best for different patients, supporting the use of patient-specific algorithms and long-term monitoring. The crowd-sourcing ecosystem for seizure prediction will enable further worldwide community study of the data to yield greater improvements in prediction performance by way of competition, collaboration and synergism.10.1093/brain/awy210_video1awy210media15817489051001.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $x diagnostické zobrazování $x patofyziologie $7 D001921
- 650 _2
- $a crowdsourcing $x metody $7 D063045
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a epilepsie $x patofyziologie $7 D004827
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a předpověď $x metody $7 D005544
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a prediktivní hodnota testů $7 D011237
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a záchvaty $x patofyziologie $7 D012640
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Karoly, Philippa $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia.
- 700 1_
- $a Freestone, Dean R $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia.
- 700 1_
- $a Brinkmann, Benjamin H $u Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- 700 1_
- $a Temko, Andriy $u Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland.
- 700 1_
- $a Barachant, Alexandre $u Grenoble, France.
- 700 1_
- $a Li, Feng $u Minnesota, USA.
- 700 1_
- $a Titericz, Gilberto $u California, USA.
- 700 1_
- $a Lang, Brian W $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
- 700 1_
- $a Lavery, Daniel $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
- 700 1_
- $a Roman, Kelly $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
- 700 1_
- $a Broadhead, Derek $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
- 700 1_
- $a Dobson, Scott $u Areté Associates, 1550 Crystal Drive, Suite 703, Arlington, VA, USA.
- 700 1_
- $a Jones, Gareth $u UCL Ear Institute, 332 Gray's Inn Road, London, UK.
- 700 1_
- $a Tang, Qingnan $u Department of Physics, National University of Singapore, Singapore.
- 700 1_
- $a Ivanenko, Irina $u Kyiv, Ukraine.
- 700 1_
- $a Panichev, Oleg $u Kyiv, Ukraine.
- 700 1_
- $a Proix, Timothée $u Department of Neuroscience, Brown University, Providence, Rhode Island, USA. Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, Rhode Island, USA.
- 700 1_
- $a Náhlík, Michal $u Prague, Czech Republic.
- 700 1_
- $a Grunberg, Daniel B $u Solverworld, Suite 140, 1337 Mass. Ave, Arlington, Massachusetts, USA.
- 700 1_
- $a Reuben, Chip $u Redondo Beach, CA, USA.
- 700 1_
- $a Worrell, Gregory $u Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- 700 1_
- $a Litt, Brian $u University of Pennsylvania, Penn Center for Neuroengineering and Therapeutics, Philadelphia, PA, USA.
- 700 1_
- $a Liley, David T J $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. Brain Dynamics Lab, Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn VIC, Australia.
- 700 1_
- $a Grayden, David B $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia. NeuroEngineering Lab, Department of Biomedical Engineering, The University of Melbourne, Parkville VIC, Australia.
- 700 1_
- $a Cook, Mark J $u Department of Medicine - St. Vincent's, The University of Melbourne, Parkville VIC, Australia.
- 773 0_
- $w MED00009356 $t Brain : a journal of neurology $x 1460-2156 $g Roč. 141, č. 9 (2018), s. 2619-2630
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30101347 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191011091004 $b ABA008
- 999 __
- $a ok $b bmc $g 1451738 $s 1073628
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 141 $c 9 $d 2619-2630 $e 20180901 $i 1460-2156 $m Brain $n Brain $x MED00009356
- GRA __
- $a U24 NS063930 $p NINDS NIH HHS $2 United States
- GRA __
- $a UH2 NS095495 $p NINDS NIH HHS $2 United States
- GRA __
- $a R01 NS099348 $p NINDS NIH HHS $2 United States
- GRA __
- $a K01 ES025436 $p NIEHS NIH HHS $2 United States
- GRA __
- $a R01 NS092882 $p NINDS NIH HHS $2 United States
- GRA __
- $a R01 NS079533 $p NINDS NIH HHS $2 United States
- GRA __
- $a R01 NS099348 $p NINDS NIH HHS $2 United States
- LZP __
- $a Pubmed-20191007