-
Something wrong with this record ?
The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes
U. Kania, T. Nodzyński, Q. Lu, GR. Hicks, W. Nerinckx, K. Mishev, F. Peurois, J. Cherfils, R. De Rycke, P. Grones, S. Robert, E. Russinova, J. Friml,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1989 to 1 year ago
Freely Accessible Science Journals
from 1989 to 12 months ago
Open Access Digital Library
from 1989-01-01
PubMed
30018156
DOI
10.1105/tpc.18.00127
Knihovny.cz E-resources
- MeSH
- Arabidopsis drug effects genetics metabolism MeSH
- Brefeldin A pharmacology MeSH
- Cell Membrane drug effects metabolism MeSH
- Chromones chemistry pharmacology MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- Endocytosis drug effects MeSH
- Plants, Genetically Modified MeSH
- Membrane Glycoproteins genetics metabolism MeSH
- Membrane Transport Proteins genetics metabolism MeSH
- Mutation MeSH
- Protein Domains MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae Proteins genetics metabolism MeSH
- Saccharomyces cerevisiae drug effects metabolism MeSH
- Molecular Docking Simulation MeSH
- Transcription Factors genetics metabolism MeSH
- Protein Transport drug effects MeSH
- Guanine Nucleotide Exchange Factors chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035121
- 003
- CZ-PrNML
- 005
- 20191014120849.0
- 007
- ta
- 008
- 191007s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1105/tpc.18.00127 $2 doi
- 035 __
- $a (PubMed)30018156
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kania, Urszula $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
- 245 14
- $a The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes / $c U. Kania, T. Nodzyński, Q. Lu, GR. Hicks, W. Nerinckx, K. Mishev, F. Peurois, J. Cherfils, R. De Rycke, P. Grones, S. Robert, E. Russinova, J. Friml,
- 520 9_
- $a The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.
- 650 _2
- $a Arabidopsis $x účinky léků $x genetika $x metabolismus $7 D017360
- 650 _2
- $a proteiny huseníčku $x genetika $x metabolismus $7 D029681
- 650 _2
- $a brefeldin A $x farmakologie $7 D020126
- 650 _2
- $a buněčná membrána $x účinky léků $x metabolismus $7 D002462
- 650 _2
- $a chromony $x chemie $x farmakologie $7 D002867
- 650 _2
- $a DNA vazebné proteiny $x genetika $x metabolismus $7 D004268
- 650 _2
- $a endocytóza $x účinky léků $7 D004705
- 650 _2
- $a výměnné faktory guaninnukleotidů $x chemie $x genetika $x metabolismus $7 D020662
- 650 _2
- $a membránové glykoproteiny $x genetika $x metabolismus $7 D008562
- 650 _2
- $a membránové transportní proteiny $x genetika $x metabolismus $7 D026901
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a transport proteinů $x účinky léků $7 D021381
- 650 _2
- $a Saccharomyces cerevisiae $x účinky léků $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
- 650 _2
- $a transkripční faktory $x genetika $x metabolismus $7 D014157
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nodzyński, Tomasz $u Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-625 00 Brno, Czech Republic.
- 700 1_
- $a Lu, Qing $u Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
- 700 1_
- $a Hicks, Glenn R $u Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
- 700 1_
- $a Nerinckx, Wim $u VIB-UGent Center for Medical Biotechnology, 9052 Ghent-Zwijnaarde, Belgium. Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.
- 700 1_
- $a Mishev, Kiril $u Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium. Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
- 700 1_
- $a Peurois, François $u Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France.
- 700 1_
- $a Cherfils, Jacqueline $u Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France.
- 700 1_
- $a De Rycke, Riet $u Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium. VIB BioImaging Core, 9052Ghent, Belgium.
- 700 1_
- $a Grones, Peter $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria. Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
- 700 1_
- $a Robert, Stéphanie $u Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
- 700 1_
- $a Russinova, Eugenia $u Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
- 700 1_
- $a Friml, Jiří $u Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria jiri.friml@ist.ac.at.
- 773 0_
- $w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 30, č. 10 (2018), s. 2553-2572
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30018156 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191014121313 $b ABA008
- 999 __
- $a ok $b bmc $g 1451781 $s 1073671
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 30 $c 10 $d 2553-2572 $e 20180717 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
- LZP __
- $a Pubmed-20191007