• Je něco špatně v tomto záznamu ?

Laser-synthesized nanocrystalline, ferroelectric, bioactive BaTiO3/Pt/FS for bone implants

M. Jelínek, E. Buixaderas, J. Drahokoupil, T. Kocourek, J. Remsa, P. Vaněk, M. Vandrovcová, M. Doubková, L. Bačáková,

. 2018 ; 32 (10) : 1464-1475. [pub] 20180405

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035311

The goal of our study is to design BaTiO3 ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO3 layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO3 and Pt layers were prepared using KrF excimer laser ablation at substrate temperature Ts in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa. The BaTiO3/Pt and Pt layers adhered well to the substrates. BaTiO3 films of crystallite size 60-140 nm were fabricated. Ferroelectric loops were measured and ferroelectricity was also confirmed using Raman scattering measurements. Results of atomic force microscopy topology and the X-ray diffraction structure of the BaTiO3/Pt/fused silica multilayers are presented. The adhesion, viability, growth, and osteogenic differentiation of human osteoblast-like Saos-2 cells were also studied. On days 1, 3, and 7 after seeding, the lowest cell numbers were found on non-ferroelectric BaTiO3, while the values on ferroelectric BaTiO3, on non-annealed and annealed Pt interlayers, and on the control tissue culture polystyrene dishes and microscopic glass slides were similar, and were usually significantly higher than on non-ferroelectric BaTiO3. A similar trend was observed for the intensity of the fluorescence of alkaline phosphatase, a medium-term marker of osteogenic differentiation, and of osteocalcin, a late marker of osteogenic differentiation. At the same time, the cell viability, tested on day 1 after seeding, was very high on all tested samples, reaching 93-99%. Ferroelectric BaTiO3 films deposited on metallic bone implants through a Pt interlayer can therefore markedly improve the osseointegration of these implants in comparison with non-ferroelectric BaTiO3 films.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035311
003      
CZ-PrNML
005      
20191015091848.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1177/0885328218768646 $2 doi
035    __
$a (PubMed)29621929
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Jelínek, Miroslav $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic. 2 Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic.
245    10
$a Laser-synthesized nanocrystalline, ferroelectric, bioactive BaTiO3/Pt/FS for bone implants / $c M. Jelínek, E. Buixaderas, J. Drahokoupil, T. Kocourek, J. Remsa, P. Vaněk, M. Vandrovcová, M. Doubková, L. Bačáková,
520    9_
$a The goal of our study is to design BaTiO3 ferroelectric layers that will cover metal implants and provide improved osseointegration. We synthesized ferroelectric BaTiO3 layers on Pt/fused silica substrates, and we studied their physical and bio-properties. BaTiO3 and Pt layers were prepared using KrF excimer laser ablation at substrate temperature Ts in the range from 200°C to 750°C in vacuum or under oxygen pressure of 10 Pa, 15 Pa, and 20 Pa. The BaTiO3/Pt and Pt layers adhered well to the substrates. BaTiO3 films of crystallite size 60-140 nm were fabricated. Ferroelectric loops were measured and ferroelectricity was also confirmed using Raman scattering measurements. Results of atomic force microscopy topology and the X-ray diffraction structure of the BaTiO3/Pt/fused silica multilayers are presented. The adhesion, viability, growth, and osteogenic differentiation of human osteoblast-like Saos-2 cells were also studied. On days 1, 3, and 7 after seeding, the lowest cell numbers were found on non-ferroelectric BaTiO3, while the values on ferroelectric BaTiO3, on non-annealed and annealed Pt interlayers, and on the control tissue culture polystyrene dishes and microscopic glass slides were similar, and were usually significantly higher than on non-ferroelectric BaTiO3. A similar trend was observed for the intensity of the fluorescence of alkaline phosphatase, a medium-term marker of osteogenic differentiation, and of osteocalcin, a late marker of osteogenic differentiation. At the same time, the cell viability, tested on day 1 after seeding, was very high on all tested samples, reaching 93-99%. Ferroelectric BaTiO3 films deposited on metallic bone implants through a Pt interlayer can therefore markedly improve the osseointegration of these implants in comparison with non-ferroelectric BaTiO3 films.
650    _2
$a sloučeniny barya $x chemie $7 D017609
650    _2
$a kostní náhrady $x chemie $7 D018786
650    _2
$a buněčné linie $7 D002460
650    _2
$a elektřina $7 D004560
650    _2
$a lidé $7 D006801
650    _2
$a lasery $7 D007834
650    _2
$a nanočástice $x chemie $x ultrastruktura $7 D053758
650    _2
$a osteoblasty $x cytologie $7 D010006
650    _2
$a osteogeneze $7 D010012
650    _2
$a platina $x chemie $7 D010984
650    _2
$a protézy a implantáty $7 D019736
650    _2
$a oxid křemičitý $x chemie $7 D012822
650    _2
$a titan $x chemie $7 D014025
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Buixaderas, Elena $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic.
700    1_
$a Drahokoupil, Jan $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic.
700    1_
$a Kocourek, Tomáš $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic. 2 Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic.
700    1_
$a Remsa, Jan $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic. 2 Czech Technical University in Prague, Faculty of Biomedical Engineering, Kladno, Czech Republic.
700    1_
$a Vaněk, Přemysl $u 1 Institute of Physics of the Czech Academy of Sciences, Prague 8, Czech Republic.
700    1_
$a Vandrovcová, Marta $u 3 Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
700    1_
$a Doubková, Martina $u 3 Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
700    1_
$a Bačáková, Lucie $u 3 Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
773    0_
$w MED00188768 $t Journal of biomaterials applications $x 1530-8022 $g Roč. 32, č. 10 (2018), s. 1464-1475
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29621929 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191015092313 $b ABA008
999    __
$a ok $b bmc $g 1451971 $s 1073861
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 32 $c 10 $d 1464-1475 $e 20180405 $i 1530-8022 $m Journal of biomaterials applications $n J Biomater Appl $x MED00188768
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...