Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Rampant Host Switching Shaped the Termite Gut Microbiome

T. Bourguignon, N. Lo, C. Dietrich, J. Šobotník, S. Sidek, Y. Roisin, A. Brune, TA. Evans,

. 2018 ; 28 (4) : 649-654.e2. [pub] 20180208

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035405

The gut microbiota of animals exert major effects on host biology [1]. Although horizontal transfer is generally considered the prevalent route for the acquisition of gut bacteria in mammals [2], some bacterial lineages have co-speciated with their hosts on timescales of several million years [3]. Termites harbor a complex gut microbiota, and their advanced social behavior provides the potential for long-term vertical symbiont transmission, and co-evolution of gut symbionts and host [4-6]. Despite clear evolutionary patterns in the gut microbiota of termites [7], a consensus on how microbial communities were assembled during termite diversification has yet to be reached. Although some studies have concluded that vertical transmission has played a major role [8, 9], others indicate that diet and gut microenvironment have been the primary determinants shaping microbial communities in termite guts [7, 10]. To address this issue, we examined the gut microbiota of 94 termite species, through 16S rRNA metabarcoding. We analyzed the phylogeny of 211 bacterial lineages obtained from termite guts, including their closest relatives from other environments, which were identified using BLAST. The results provided strong evidence for rampant horizontal transfer of gut bacteria between termite host lineages. Although the majority of termite-derived phylotypes formed large monophyletic groups, indicating high levels of niche specialization, numerous other clades were interspersed with bacterial lineages from the guts of other animals. Our results indicate that "mixed-mode" transmission, which combines colony-to-offspring vertical transmission with horizontal colony-to-colony transfer, has been the primary driving force shaping the gut microbiota of termites.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035405
003      
CZ-PrNML
005      
20191014093118.0
007      
ta
008      
191007s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2018.01.035 $2 doi
035    __
$a (PubMed)29429621
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Bourguignon, Thomas $u Okinawa Institute of Science & Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic. Electronic address: thomas.bourguignon@oist.jp.
245    10
$a Rampant Host Switching Shaped the Termite Gut Microbiome / $c T. Bourguignon, N. Lo, C. Dietrich, J. Šobotník, S. Sidek, Y. Roisin, A. Brune, TA. Evans,
520    9_
$a The gut microbiota of animals exert major effects on host biology [1]. Although horizontal transfer is generally considered the prevalent route for the acquisition of gut bacteria in mammals [2], some bacterial lineages have co-speciated with their hosts on timescales of several million years [3]. Termites harbor a complex gut microbiota, and their advanced social behavior provides the potential for long-term vertical symbiont transmission, and co-evolution of gut symbionts and host [4-6]. Despite clear evolutionary patterns in the gut microbiota of termites [7], a consensus on how microbial communities were assembled during termite diversification has yet to be reached. Although some studies have concluded that vertical transmission has played a major role [8, 9], others indicate that diet and gut microenvironment have been the primary determinants shaping microbial communities in termite guts [7, 10]. To address this issue, we examined the gut microbiota of 94 termite species, through 16S rRNA metabarcoding. We analyzed the phylogeny of 211 bacterial lineages obtained from termite guts, including their closest relatives from other environments, which were identified using BLAST. The results provided strong evidence for rampant horizontal transfer of gut bacteria between termite host lineages. Although the majority of termite-derived phylotypes formed large monophyletic groups, indicating high levels of niche specialization, numerous other clades were interspersed with bacterial lineages from the guts of other animals. Our results indicate that "mixed-mode" transmission, which combines colony-to-offspring vertical transmission with horizontal colony-to-colony transfer, has been the primary driving force shaping the gut microbiota of termites.
650    _2
$a zvířata $7 D000818
650    _2
$a Bacteria $x klasifikace $x genetika $7 D001419
650    _2
$a střevní mikroflóra $x fyziologie $7 D000069196
650    _2
$a Isoptera $x mikrobiologie $7 D020049
650    _2
$a fylogeneze $7 D010802
650    _2
$a bakteriální RNA $x analýza $7 D012329
650    _2
$a RNA ribozomální 16S $x analýza $7 D012336
650    _2
$a symbióza $7 D013559
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lo, Nathan $u School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. Electronic address: nathan.lo@sydney.edu.au.
700    1_
$a Dietrich, Carsten $u Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Strategy and Innovation Technology Center, Siemens Healthcare, Erlangen, Germany.
700    1_
$a Šobotník, Jan $u Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic.
700    1_
$a Sidek, Sarah $u Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore.
700    1_
$a Roisin, Yves $u Evolutionary Biology and Ecology, Université Libre de Bruxelles, Bruxelles, Belgium.
700    1_
$a Brune, Andreas $u Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
700    1_
$a Evans, Theodore A $u Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; School of Animal Biology, University of Western Australia, Perth, WA 6009, Australia.
773    0_
$w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 28, č. 4 (2018), s. 649-654.e2
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29429621 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191014093542 $b ABA008
999    __
$a ok $b bmc $g 1452065 $s 1073955
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 28 $c 4 $d 649-654.e2 $e 20180208 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...