-
Je něco špatně v tomto záznamu ?
Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating
S. Mazurenko, A. Kunka, K. Beerens, CM. Johnson, J. Damborsky, Z. Prokop,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
MC_U105178788
Medical Research Council - United Kingdom
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
- MeSH
- kalorimetrie metody MeSH
- kinetika MeSH
- kuřecí embryo MeSH
- muramidasa chemie metabolismus MeSH
- proteinové inženýrství MeSH
- rozbalení proteinů MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035509
- 003
- CZ-PrNML
- 005
- 20191008113037.0
- 007
- ta
- 008
- 191007s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-017-16360-y $2 doi
- 035 __
- $a (PubMed)29176711
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Mazurenko, Stanislav $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- 245 10
- $a Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating / $c S. Mazurenko, A. Kunka, K. Beerens, CM. Johnson, J. Damborsky, Z. Prokop,
- 520 9_
- $a Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kalorimetrie $x metody $7 D002151
- 650 _2
- $a kuřecí embryo $7 D002642
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a muramidasa $x chemie $x metabolismus $7 D009113
- 650 _2
- $a proteinové inženýrství $7 D015202
- 650 _2
- $a rozbalení proteinů $7 D058767
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kunka, Antonin $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- 700 1_
- $a Beerens, Koen $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
- 700 1_
- $a Johnson, Christopher M $u Biophysics Facilities, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
- 700 1_
- $a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. jiri@chemi.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. jiri@chemi.muni.cz.
- 700 1_
- $a Prokop, Zbynek $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. zbynek@chemi.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. zbynek@chemi.muni.cz.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 16321
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29176711 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191008113453 $b ABA008
- 999 __
- $a ok $b bmc $g 1452169 $s 1074059
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 1 $d 16321 $e 20171124 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a MC_U105178788 $p Medical Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20191007