• Je něco špatně v tomto záznamu ?

Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating

S. Mazurenko, A. Kunka, K. Beerens, CM. Johnson, J. Damborsky, Z. Prokop,

. 2017 ; 7 (1) : 16321. [pub] 20171124

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035509

Grantová podpora
MC_U105178788 Medical Research Council - United Kingdom

Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035509
003      
CZ-PrNML
005      
20191008113037.0
007      
ta
008      
191007s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-017-16360-y $2 doi
035    __
$a (PubMed)29176711
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Mazurenko, Stanislav $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
245    10
$a Exploration of Protein Unfolding by Modelling Calorimetry Data from Reheating / $c S. Mazurenko, A. Kunka, K. Beerens, CM. Johnson, J. Damborsky, Z. Prokop,
520    9_
$a Studies of protein unfolding mechanisms are critical for understanding protein functions inside cells, de novo protein design as well as defining the role of protein misfolding in neurodegenerative disorders. Calorimetry has proven indispensable in this regard for recording full energetic profiles of protein unfolding and permitting data fitting based on unfolding pathway models. While both kinetic and thermodynamic protein stability are analysed by varying scan rates and reheating, the latter is rarely used in curve-fitting, leading to a significant loss of information from experiments. To extract this information, we propose fitting both first and second scans simultaneously. Four most common single-peak transition models are considered: (i) fully reversible, (ii) fully irreversible, (iii) partially reversible transitions, and (iv) general three-state models. The method is validated using calorimetry data for chicken egg lysozyme, mutated Protein A, three wild-types of haloalkane dehalogenases, and a mutant stabilized by protein engineering. We show that modelling of reheating increases the precision of determination of unfolding mechanisms, free energies, temperatures, and heat capacity differences. Moreover, this modelling indicates whether alternative refolding pathways might occur upon cooling. The Matlab-based data fitting software tool and its user guide are provided as a supplement.
650    _2
$a zvířata $7 D000818
650    _2
$a kalorimetrie $x metody $7 D002151
650    _2
$a kuřecí embryo $7 D002642
650    _2
$a kinetika $7 D007700
650    _2
$a muramidasa $x chemie $x metabolismus $7 D009113
650    _2
$a proteinové inženýrství $7 D015202
650    _2
$a rozbalení proteinů $7 D058767
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kunka, Antonin $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
700    1_
$a Beerens, Koen $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic.
700    1_
$a Johnson, Christopher M $u Biophysics Facilities, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
700    1_
$a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. jiri@chemi.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. jiri@chemi.muni.cz.
700    1_
$a Prokop, Zbynek $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00, Brno, Czech Republic. zbynek@chemi.muni.cz. International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic. zbynek@chemi.muni.cz.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 16321
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29176711 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191008113453 $b ABA008
999    __
$a ok $b bmc $g 1452169 $s 1074059
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 7 $c 1 $d 16321 $e 20171124 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a MC_U105178788 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace