-
Je něco špatně v tomto záznamu ?
FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics
B. Ricken, BA. Kolvenbach, C. Bergesch, D. Benndorf, K. Kroll, H. Strnad, Č. Vlček, R. Adaixo, F. Hammes, P. Shahgaldian, A. Schäffer, HE. Kohler, PF. Corvini,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
- MeSH
- Actinobacteria účinky léků genetika růst a vývoj metabolismus MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- biodegradace účinky léků MeSH
- flavinmononukleotid metabolismus MeSH
- fylogeneze MeSH
- hydrochinony metabolismus MeSH
- multigenová rodina MeSH
- oxygenasy se smíšenou funkcí metabolismus MeSH
- radioizotopy uhlíku MeSH
- sulfonamidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035525
- 003
- CZ-PrNML
- 005
- 20191008113042.0
- 007
- ta
- 008
- 191007s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-017-16132-8 $2 doi
- 035 __
- $a (PubMed)29150672
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Ricken, Benjamin $u Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
- 245 10
- $a FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics / $c B. Ricken, BA. Kolvenbach, C. Bergesch, D. Benndorf, K. Kroll, H. Strnad, Č. Vlček, R. Adaixo, F. Hammes, P. Shahgaldian, A. Schäffer, HE. Kohler, PF. Corvini,
- 520 9_
- $a We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.
- 650 _2
- $a Actinobacteria $x účinky léků $x genetika $x růst a vývoj $x metabolismus $7 D039903
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a biodegradace $x účinky léků $7 D001673
- 650 _2
- $a radioizotopy uhlíku $7 D002250
- 650 _2
- $a flavinmononukleotid $x metabolismus $7 D005486
- 650 _2
- $a bakteriální geny $7 D005798
- 650 _2
- $a hydrochinony $x metabolismus $7 D006873
- 650 _2
- $a oxygenasy se smíšenou funkcí $x metabolismus $7 D006899
- 650 _2
- $a multigenová rodina $7 D005810
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a sulfonamidy $x metabolismus $7 D013449
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kolvenbach, Boris A $u Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
- 700 1_
- $a Bergesch, Christian $u Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- 700 1_
- $a Benndorf, Dirk $u Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- 700 1_
- $a Kroll, Kevin $u Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- 700 1_
- $a Strnad, Hynek $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Vlček, Čestmír $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic.
- 700 1_
- $a Adaixo, Ricardo $u Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
- 700 1_
- $a Hammes, Frederik $u Department Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- 700 1_
- $a Shahgaldian, Patrick $u Institute for Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland.
- 700 1_
- $a Schäffer, Andreas $u Institute for Environmental Research, RWTH Aachen University, Aachen, Germany.
- 700 1_
- $a Kohler, Hans-Peter E $u Department Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
- 700 1_
- $a Corvini, Philippe F-X $u Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland. philippe.corvini@fhnw.ch.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 15783
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29150672 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191008113458 $b ABA008
- 999 __
- $a ok $b bmc $g 1452185 $s 1074075
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 1 $d 15783 $e 20171117 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20191007