• This record comes from PubMed

FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics

. 2017 Nov 17 ; 7 (1) : 15783. [epub] 20171117

Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 29150672
PubMed Central PMC5693940
DOI 10.1038/s41598-017-16132-8
PII: 10.1038/s41598-017-16132-8
Knihovny.cz E-resources

We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.

See more in PubMed

O’Neill, J. The review on antimicrobial resistance. (2015). Available at: http://amr-review.org/Publications. (Accessed: 10th July 2017).

D’Costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. doi: 10.1038/nature10388. PubMed DOI

Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007;5:175–186. doi: 10.1038/nrmicro1614. PubMed DOI

Miao, V., Davies, D. & Davies, J. In Antimicrobial Resistance in the Environment 7–14, 10.1002/9781118156247.ch2 (John Wiley & Sons, Inc., 2011).

Wright, G. D. In Antimicrobial Resistance in the Environment 15–27, 10.1002/9781118156247.ch3 (John Wiley & Sons, Inc., 2011).

Baunach M, Ding L, Willing K, Hertweck C. Angew. Chemie Int. Ed. 2015. Bacterial synthesis of unusual sulfonamide and sulfone antibiotics by flavoenzyme-mediated sulfur dioxide capture; pp. 13279–13283. PubMed

Domagk, G. Further progress in chemotherapy of bacterial infections. Nobel Lect. December 1 (1947).

Schmith, K. Experimental Studies on the Effect of Sulfapyridine on Pneumococci and Gonococci. (Nyt Nordisk Forlag, 1941).

Wise EM, Abou-Donia MM. Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. 1975;72:2621–2625. doi: 10.1073/pnas.72.7.2621. PubMed DOI PMC

Yun M-K, et al. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science. 2012;335:1110–1114. doi: 10.1126/science.1214641. PubMed DOI PMC

Allen HK, et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010;8:251–259. doi: 10.1038/nrmicro2312. PubMed DOI

Dantas, G. & Sommer, M. O. A. In Antimicrobial resistance in the environment 29–41, 10.1002/9781118156247.ch4 (John Wiley & Sons, Inc., 2011).

Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008;320:100–103. doi: 10.1126/science.1155157. PubMed DOI

Walsh F, Amyes SGB, Duffy B. Challenging the concept of bacteria subsisting on antibiotics. Int. J. Antimicrob. Agents. 2013;41:558–563. doi: 10.1016/j.ijantimicag.2013.01.021. PubMed DOI

Pramer D, Starkey RL. Decomposition of streptomycin. Science. 1951;113:127–127. doi: 10.1126/science.113.2927.127. PubMed DOI

Abd-el-Malek Y, Monib M, Hazem A. Chloramphenicol, a simultaneous carbon and nitrogen source for a Streptomyces sp. from Egyptian soil. Nature. 1961;189:775–776. doi: 10.1038/189775a0. PubMed DOI

Kameda Y, Kimura Y, Toyoura E, Omori T. A Method for isolating bacteria capable of producing 6-aminopenicillanic acid from benzylpenicillin. Nature. 1961;191:1122–1123. doi: 10.1038/1911122a0. PubMed DOI

Johnsen J. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Arch. Microbiol. 1977;115:271–5. doi: 10.1007/BF00446452. PubMed DOI

Johnsen J. Presence of beta-lactamase and penicillin acylase in a Pseudomonas sp. utilizing benzylpenicillin as a carbon source. J. Gen. Appl. Microbiol. 1981;27:499–503. doi: 10.2323/jgam.27.499. DOI

Ricken B, et al. ipso-Hydroxylation and subsequent fragmentation - a novel microbial strategy to eliminate sulfonamide antibiotics. Appl. Environ. Microbiol. 2013;79:5550–8. doi: 10.1128/AEM.00911-13. PubMed DOI PMC

Ricken B, et al. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway. N. Biotechnol. 2015;32:710–715. doi: 10.1016/j.nbt.2015.03.005. PubMed DOI

Bouju H, Ricken B, Beffa T, Corvini PF-X, Kolvenbach BA. Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl. Environ. Microbiol. 2012;78:277–9. doi: 10.1128/AEM.05888-11. PubMed DOI PMC

Deng Y, Mao Y, Li B, Yang C, Zhang T. Aerobic degradation of sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization. Environ. Sci. Technol. 2016;50:9566–9575. doi: 10.1021/acs.est.6b02231. PubMed DOI

Herzog B, Lemmer H, Horn H, Müller E. Characterization of pure cultures isolated from sulfamethoxazole-acclimated activated sludge with respect to taxonomic identification and sulfamethoxazole biodegradation potential. BMC Microbiol. 2013;13:276. doi: 10.1186/1471-2180-13-276. PubMed DOI PMC

Islas-Espinoza M, Reid BJ, Wexler M, Bond PL. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure. Microb. Ecol. 2012;64:140–151. doi: 10.1007/s00248-012-0010-5. PubMed DOI

Jiang B, et al. Genome sequence of a cold-adaptable sulfamethoxazole-degrading bacterium, Pseudomonas psychrophila HA-4. J. Bacteriol. 2012;194:5721. doi: 10.1128/JB.01377-12. PubMed DOI PMC

Mulla SI, et al. Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One. 2016;11:e0165013. doi: 10.1371/journal.pone.0165013. PubMed DOI PMC

Reis PJM, et al. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J. Hazard. Mater. 2014;280:741–9. doi: 10.1016/j.jhazmat.2014.08.039. PubMed DOI

Tappe W, et al. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4 isolated from lysimeters previously manured with slurry from sulfadiazine medicated pigs. Appl. Environ. Microbiol. 2013;79:2572–7. doi: 10.1128/AEM.03636-12. PubMed DOI PMC

Topp E, et al. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J. Environ. Qual. 2013;42:173–178. doi: 10.2134/jeq2012.0162. PubMed DOI

Zhang W-W, et al. Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World J. Microbiol. Biotechnol. 2012;28:447–452. doi: 10.1007/s11274-011-0834-z. PubMed DOI

Zhang Y-B, et al. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis. Sci. Total Environ. 2016;565:547–556. doi: 10.1016/j.scitotenv.2016.05.063. PubMed DOI

Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria Subsisting on Antibiotics. Science. 2008;320:100–103. doi: 10.1126/science.1155157. PubMed DOI

Martin-Laurent F, et al. Draft Genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain C448. Genome Announc. 2014;2:2012–2013. doi: 10.1128/genomeA.01113-13. PubMed DOI PMC

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Marblestone JG. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Sci. 2006;15:182–189. doi: 10.1110/ps.051812706. PubMed DOI PMC

van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 2006;124:670–689. doi: 10.1016/j.jbiotec.2006.03.044. PubMed DOI

UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). PubMed PMC

Tappe W, et al. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4 isolated from lysimeters previously manured with slurry from sulfadiazine medicated pigs. Appl. Environ. Microbiol. 2013;79:2572–7. doi: 10.1128/AEM.03636-12. PubMed DOI PMC

Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006;72:1719–1728. doi: 10.1128/AEM.72.3.1719-1728.2006. PubMed DOI PMC

Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 2002;13:218–227. doi: 10.1016/S0958-1669(02)00315-4. PubMed DOI

Solyanikova IP, Golovleva LA. Physiological and biochemical properties of actinobacteria as the basis of their high biodegradative activity (Review) Appl. Biochem. Microbiol. 2015;51:143–149. doi: 10.1134/S0003683815020180. PubMed DOI

Pérez-Pantoja, D., Donoso, R., Junca, H., González, D. & Pieper, H. In Handbook of hydrocarbon and lipid microbiology (ed. Timmis, K. N.) 1355–1397 (Springer Netherlands, 2009).

Hirth N, et al. An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem. Biol. Technol. Agric. 2016;3:29. doi: 10.1186/s40538-016-0080-6. DOI

Fenu A, Donckels BMR, Beffa T, Beimfohr C, Weemaes M. Evaluating the application of Microbacterium sp. strain BR1 for the removal of sulfamethoxazole in full-scale membrane bioreactors. Water Sci. Technol. 2015;72:1754–61. doi: 10.2166/wst.2015.397. PubMed DOI

Vila-Costa M, et al. Degradation of sulfonamides as a microbial resistance mechanism. Water Res. 2017;115:309–317. doi: 10.1016/j.watres.2017.03.007. PubMed DOI

Gneiding K, Frodl R, Funke G. Identities of Microbacterium spp. encountered in human clinical specimens. J. Clin. Microbiol. 2008;46:3646–3652. doi: 10.1128/JCM.01202-08. PubMed DOI PMC

Funke G, et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol. 1996;34:2356–2363. PubMed PMC

Funke G, von Graevenitz A, Clarridge JE, Bernard KA. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997;10:125–59. PubMed PMC

Osman S, et al. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl. Environ. Microbiol. 2008;74:959–970. doi: 10.1128/AEM.01973-07. PubMed DOI PMC

Wu G, Liu X. Characterization of predominant bacteria isolates from clean rooms in a pharmaceutical production unit. J. Zhejiang Univ. Sci. B. 2007;8:666–72. doi: 10.1631/jzus.2007.B0666. PubMed DOI PMC

Majewsky M, et al. Antibacterial activity of sulfamethoxazole transformation products (TPs): general relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol. 2014;27:1821–1828. doi: 10.1021/tx500267x. PubMed DOI

Jia B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC

Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Aziz RK, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Overbeek R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC

Liao YC, Lin HH, Sabharwal A, Haase EM, Scannapieco FA. MyPro: A seamless pipeline for automated prokaryotic genome assembly and annotation. J. Microbiol. Methods. 2015;113:72–74. doi: 10.1016/j.mimet.2015.04.006. PubMed DOI PMC

Van Den Ent F, Löwe J. RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods. 2006;67:67–74. doi: 10.1016/j.jbbm.2005.12.008. PubMed DOI

Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads a taxonomic study. J Gen Microbiol. 1966;43:159–271. doi: 10.1099/00221287-43-2-159. PubMed DOI

Brooks T, Keevil CW. A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbiol. 1997;24:203–206. doi: 10.1046/j.1472-765X.1997.00378.x. PubMed DOI

Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. doi: 10.1093/nar/gkf436. PubMed DOI PMC

Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–21. doi: 10.1093/sysbio/syq010. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...