FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
29150672
PubMed Central
PMC5693940
DOI
10.1038/s41598-017-16132-8
PII: 10.1038/s41598-017-16132-8
Knihovny.cz E-resources
- MeSH
- Actinobacteria drug effects genetics growth & development metabolism MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Genes, Bacterial MeSH
- Biodegradation, Environmental drug effects MeSH
- Flavin Mononucleotide metabolism MeSH
- Phylogeny MeSH
- Hydroquinones metabolism MeSH
- Multigene Family MeSH
- Mixed Function Oxygenases metabolism MeSH
- Carbon Radioisotopes MeSH
- Sulfonamides metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Carbon-14 MeSH Browser
- flavin mononucleotide hydroquinone MeSH Browser
- Flavin Mononucleotide MeSH
- Hydroquinones MeSH
- Mixed Function Oxygenases MeSH
- Carbon Radioisotopes MeSH
- Sulfonamides MeSH
We report a cluster of genes encoding two monooxygenases (SadA and SadB) and one FMN reductase (SadC) that enable Microbacterium sp. strain BR1 and other Actinomycetes to inactivate sulfonamide antibiotics. Our results show that SadA and SadC are responsible for the initial attack of sulfonamide molecules resulting in the release of 4-aminophenol. The latter is further transformed into 1,2,4-trihydroxybenzene by SadB and SadC prior to mineralization and concomitant production of biomass. As the degradation products lack antibiotic activity, the presence of SadA will result in an alleviated bacteriostatic effect of sulfonamides. In addition to the relief from antibiotic stress this bacterium gains access to an additional carbon source when this gene cluster is expressed. As degradation of sulfonamides was also observed when Microbacterium sp. strain BR1 was grown on artificial urine medium, colonization with such strains may impede common sulfonamide treatment during co-infections with pathogens of the urinary tract. This case of biodegradation exemplifies the evolving catabolic capacity of bacteria, given that sulfonamide bacteriostatic are purely of synthetic origin. The wide distribution of this cluster in Actinomycetes and the presence of traA encoding a relaxase in its vicinity suggest that this cluster is mobile and that is rather alarming.
See more in PubMed
O’Neill, J. The review on antimicrobial resistance. (2015). Available at: http://amr-review.org/Publications. (Accessed: 10th July 2017).
D’Costa VM, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–461. doi: 10.1038/nature10388. PubMed DOI
Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007;5:175–186. doi: 10.1038/nrmicro1614. PubMed DOI
Miao, V., Davies, D. & Davies, J. In Antimicrobial Resistance in the Environment 7–14, 10.1002/9781118156247.ch2 (John Wiley & Sons, Inc., 2011).
Wright, G. D. In Antimicrobial Resistance in the Environment 15–27, 10.1002/9781118156247.ch3 (John Wiley & Sons, Inc., 2011).
Baunach M, Ding L, Willing K, Hertweck C. Angew. Chemie Int. Ed. 2015. Bacterial synthesis of unusual sulfonamide and sulfone antibiotics by flavoenzyme-mediated sulfur dioxide capture; pp. 13279–13283. PubMed
Domagk, G. Further progress in chemotherapy of bacterial infections. Nobel Lect. December 1 (1947).
Schmith, K. Experimental Studies on the Effect of Sulfapyridine on Pneumococci and Gonococci. (Nyt Nordisk Forlag, 1941).
Wise EM, Abou-Donia MM. Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc. Natl. Acad. Sci. 1975;72:2621–2625. doi: 10.1073/pnas.72.7.2621. PubMed DOI PMC
Yun M-K, et al. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science. 2012;335:1110–1114. doi: 10.1126/science.1214641. PubMed DOI PMC
Allen HK, et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 2010;8:251–259. doi: 10.1038/nrmicro2312. PubMed DOI
Dantas, G. & Sommer, M. O. A. In Antimicrobial resistance in the environment 29–41, 10.1002/9781118156247.ch4 (John Wiley & Sons, Inc., 2011).
Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008;320:100–103. doi: 10.1126/science.1155157. PubMed DOI
Walsh F, Amyes SGB, Duffy B. Challenging the concept of bacteria subsisting on antibiotics. Int. J. Antimicrob. Agents. 2013;41:558–563. doi: 10.1016/j.ijantimicag.2013.01.021. PubMed DOI
Pramer D, Starkey RL. Decomposition of streptomycin. Science. 1951;113:127–127. doi: 10.1126/science.113.2927.127. PubMed DOI
Abd-el-Malek Y, Monib M, Hazem A. Chloramphenicol, a simultaneous carbon and nitrogen source for a Streptomyces sp. from Egyptian soil. Nature. 1961;189:775–776. doi: 10.1038/189775a0. PubMed DOI
Kameda Y, Kimura Y, Toyoura E, Omori T. A Method for isolating bacteria capable of producing 6-aminopenicillanic acid from benzylpenicillin. Nature. 1961;191:1122–1123. doi: 10.1038/1911122a0. PubMed DOI
Johnsen J. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Arch. Microbiol. 1977;115:271–5. doi: 10.1007/BF00446452. PubMed DOI
Johnsen J. Presence of beta-lactamase and penicillin acylase in a Pseudomonas sp. utilizing benzylpenicillin as a carbon source. J. Gen. Appl. Microbiol. 1981;27:499–503. doi: 10.2323/jgam.27.499. DOI
Ricken B, et al. ipso-Hydroxylation and subsequent fragmentation - a novel microbial strategy to eliminate sulfonamide antibiotics. Appl. Environ. Microbiol. 2013;79:5550–8. doi: 10.1128/AEM.00911-13. PubMed DOI PMC
Ricken B, et al. Degradation of sulfonamide antibiotics by Microbacterium sp. strain BR1 - elucidating the downstream pathway. N. Biotechnol. 2015;32:710–715. doi: 10.1016/j.nbt.2015.03.005. PubMed DOI
Bouju H, Ricken B, Beffa T, Corvini PF-X, Kolvenbach BA. Isolation of bacterial strains capable of sulfamethoxazole mineralization from an acclimated membrane bioreactor. Appl. Environ. Microbiol. 2012;78:277–9. doi: 10.1128/AEM.05888-11. PubMed DOI PMC
Deng Y, Mao Y, Li B, Yang C, Zhang T. Aerobic degradation of sulfadiazine by Arthrobacter spp.: Kinetics, Pathways, and Genomic Characterization. Environ. Sci. Technol. 2016;50:9566–9575. doi: 10.1021/acs.est.6b02231. PubMed DOI
Herzog B, Lemmer H, Horn H, Müller E. Characterization of pure cultures isolated from sulfamethoxazole-acclimated activated sludge with respect to taxonomic identification and sulfamethoxazole biodegradation potential. BMC Microbiol. 2013;13:276. doi: 10.1186/1471-2180-13-276. PubMed DOI PMC
Islas-Espinoza M, Reid BJ, Wexler M, Bond PL. Soil bacterial consortia and previous exposure enhance the biodegradation of sulfonamides from pig manure. Microb. Ecol. 2012;64:140–151. doi: 10.1007/s00248-012-0010-5. PubMed DOI
Jiang B, et al. Genome sequence of a cold-adaptable sulfamethoxazole-degrading bacterium, Pseudomonas psychrophila HA-4. J. Bacteriol. 2012;194:5721. doi: 10.1128/JB.01377-12. PubMed DOI PMC
Mulla SI, et al. Evaluation of sulfadiazine degradation in three newly isolated pure bacterial cultures. PLoS One. 2016;11:e0165013. doi: 10.1371/journal.pone.0165013. PubMed DOI PMC
Reis PJM, et al. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J. Hazard. Mater. 2014;280:741–9. doi: 10.1016/j.jhazmat.2014.08.039. PubMed DOI
Tappe W, et al. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4 isolated from lysimeters previously manured with slurry from sulfadiazine medicated pigs. Appl. Environ. Microbiol. 2013;79:2572–7. doi: 10.1128/AEM.03636-12. PubMed DOI PMC
Topp E, et al. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading Microbacterium sp. J. Environ. Qual. 2013;42:173–178. doi: 10.2134/jeq2012.0162. PubMed DOI
Zhang W-W, et al. Isolation and characterization of sulfonamide-degrading bacteria Escherichia sp. HS21 and Acinetobacter sp. HS51. World J. Microbiol. Biotechnol. 2012;28:447–452. doi: 10.1007/s11274-011-0834-z. PubMed DOI
Zhang Y-B, et al. Exogenous cofactors for the improvement of bioremoval and biotransformation of sulfamethoxazole by Alcaligenes faecalis. Sci. Total Environ. 2016;565:547–556. doi: 10.1016/j.scitotenv.2016.05.063. PubMed DOI
Dantas G, Sommer MOA, Oluwasegun RD, Church GM. Bacteria Subsisting on Antibiotics. Science. 2008;320:100–103. doi: 10.1126/science.1155157. PubMed DOI
Martin-Laurent F, et al. Draft Genome sequence of the sulfonamide antibiotic-degrading Microbacterium sp. strain C448. Genome Announc. 2014;2:2012–2013. doi: 10.1128/genomeA.01113-13. PubMed DOI PMC
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Marblestone JG. Comparison of SUMO fusion technology with traditional gene fusion systems: Enhanced expression and solubility with SUMO. Protein Sci. 2006;15:182–189. doi: 10.1110/ps.051812706. PubMed DOI PMC
van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J. Biotechnol. 2006;124:670–689. doi: 10.1016/j.jbiotec.2006.03.044. PubMed DOI
UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017). PubMed PMC
Tappe W, et al. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4 isolated from lysimeters previously manured with slurry from sulfadiazine medicated pigs. Appl. Environ. Microbiol. 2013;79:2572–7. doi: 10.1128/AEM.03636-12. PubMed DOI PMC
Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 2006;72:1719–1728. doi: 10.1128/AEM.72.3.1719-1728.2006. PubMed DOI PMC
Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 2002;13:218–227. doi: 10.1016/S0958-1669(02)00315-4. PubMed DOI
Solyanikova IP, Golovleva LA. Physiological and biochemical properties of actinobacteria as the basis of their high biodegradative activity (Review) Appl. Biochem. Microbiol. 2015;51:143–149. doi: 10.1134/S0003683815020180. PubMed DOI
Pérez-Pantoja, D., Donoso, R., Junca, H., González, D. & Pieper, H. In Handbook of hydrocarbon and lipid microbiology (ed. Timmis, K. N.) 1355–1397 (Springer Netherlands, 2009).
Hirth N, et al. An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem. Biol. Technol. Agric. 2016;3:29. doi: 10.1186/s40538-016-0080-6. DOI
Fenu A, Donckels BMR, Beffa T, Beimfohr C, Weemaes M. Evaluating the application of Microbacterium sp. strain BR1 for the removal of sulfamethoxazole in full-scale membrane bioreactors. Water Sci. Technol. 2015;72:1754–61. doi: 10.2166/wst.2015.397. PubMed DOI
Vila-Costa M, et al. Degradation of sulfonamides as a microbial resistance mechanism. Water Res. 2017;115:309–317. doi: 10.1016/j.watres.2017.03.007. PubMed DOI
Gneiding K, Frodl R, Funke G. Identities of Microbacterium spp. encountered in human clinical specimens. J. Clin. Microbiol. 2008;46:3646–3652. doi: 10.1128/JCM.01202-08. PubMed DOI PMC
Funke G, et al. Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol. 1996;34:2356–2363. PubMed PMC
Funke G, von Graevenitz A, Clarridge JE, Bernard KA. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997;10:125–59. PubMed PMC
Osman S, et al. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl. Environ. Microbiol. 2008;74:959–970. doi: 10.1128/AEM.01973-07. PubMed DOI PMC
Wu G, Liu X. Characterization of predominant bacteria isolates from clean rooms in a pharmaceutical production unit. J. Zhejiang Univ. Sci. B. 2007;8:666–72. doi: 10.1631/jzus.2007.B0666. PubMed DOI PMC
Majewsky M, et al. Antibacterial activity of sulfamethoxazole transformation products (TPs): general relevance for sulfonamide TPs modified at the para position. Chem. Res. Toxicol. 2014;27:1821–1828. doi: 10.1021/tx500267x. PubMed DOI
Jia B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. PubMed DOI PMC
Okonechnikov K, Golosova O, Fursov M. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Aziz RK, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Overbeek R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST) Nucleic Acids Res. 2014;42:D206–D214. doi: 10.1093/nar/gkt1226. PubMed DOI PMC
Liao YC, Lin HH, Sabharwal A, Haase EM, Scannapieco FA. MyPro: A seamless pipeline for automated prokaryotic genome assembly and annotation. J. Microbiol. Methods. 2015;113:72–74. doi: 10.1016/j.mimet.2015.04.006. PubMed DOI PMC
Van Den Ent F, Löwe J. RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods. 2006;67:67–74. doi: 10.1016/j.jbbm.2005.12.008. PubMed DOI
Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads a taxonomic study. J Gen Microbiol. 1966;43:159–271. doi: 10.1099/00221287-43-2-159. PubMed DOI
Brooks T, Keevil CW. A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbiol. 1997;24:203–206. doi: 10.1046/j.1472-765X.1997.00378.x. PubMed DOI
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–21. doi: 10.1093/sysbio/syq010. PubMed DOI