Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Leukemia surfaceome analysis reveals new disease-associated features

P Mirkowska, A Hofmann, L Sedek, L Slamova, E Mejstrikova, T Szczepanski, M Schmitz, G Cario, M Stanulla, M Schrappe, der Velden VH van, BC Bornhauser, B Wollscheid, JP Bourquin

. 2013 ; 121 (25) : e149-e159.

Jazyk angličtina Země Spojené státy americké

Perzistentní odkaz   https://www.medvik.cz/link/bmc19036407

Grantová podpora
NT13462 MZ0 CEP - Centrální evidence projektů

A better description of the leukemia cell surface proteome (surfaceome) is a prerequisite for the development of diagnostic and therapeutic tools. Insights into the complexity of the surfaceome have been limited by the lack of suitable methodologies. We combined a leukemia xenograft model with the discovery-driven chemoproteomic Cell Surface Capture technology to explore the B-cell precursor acute lymphoblastic leukemia (BCP-ALL) surfaceome; 713 cell surface proteins, including 181 CD proteins, were detected through combined analysis of 19 BCP-ALL cases. Diagnostic immunophenotypes were recapitulated in each case, and subtype specific markers were detected. To identify new leukemia-associated markers, we filtered the surfaceome data set against gene expression information from sorted, normal hematopoietic cells. Nine candidate markers (CD18, CD63, CD31, CD97, CD102, CD157, CD217, CD305, and CD317) were validated by flow cytometry in patient samples at diagnosis and during chemotherapy. CD97, CD157, CD63, and CD305 accounted for the most informative differences between normal and malignant cells. The ALL surfaceome constitutes a valuable resource to assist the functional exploration of surface markers in normal and malignant lymphopoiesis. This unbiased approach will also contribute to the development of strategies that rely on complex information for multidimensional flow cytometry data analysis to improve its diagnostic applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19036407
003      
CZ-PrNML
005      
20191010114219.0
007      
ta
008      
191010s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1182/blood-2012-11-468702 $2 doi
035    __
$a (PubMed)23649467
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Mirkowska P $u Mirkowska, Paulina. Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland.
245    10
$a Leukemia surfaceome analysis reveals new disease-associated features / $c P Mirkowska, A Hofmann, L Sedek, L Slamova, E Mejstrikova, T Szczepanski, M Schmitz, G Cario, M Stanulla, M Schrappe, der Velden VH van, BC Bornhauser, B Wollscheid, JP Bourquin
520    9_
$a A better description of the leukemia cell surface proteome (surfaceome) is a prerequisite for the development of diagnostic and therapeutic tools. Insights into the complexity of the surfaceome have been limited by the lack of suitable methodologies. We combined a leukemia xenograft model with the discovery-driven chemoproteomic Cell Surface Capture technology to explore the B-cell precursor acute lymphoblastic leukemia (BCP-ALL) surfaceome; 713 cell surface proteins, including 181 CD proteins, were detected through combined analysis of 19 BCP-ALL cases. Diagnostic immunophenotypes were recapitulated in each case, and subtype specific markers were detected. To identify new leukemia-associated markers, we filtered the surfaceome data set against gene expression information from sorted, normal hematopoietic cells. Nine candidate markers (CD18, CD63, CD31, CD97, CD102, CD157, CD217, CD305, and CD317) were validated by flow cytometry in patient samples at diagnosis and during chemotherapy. CD97, CD157, CD63, and CD305 accounted for the most informative differences between normal and malignant cells. The ALL surfaceome constitutes a valuable resource to assist the functional exploration of surface markers in normal and malignant lymphopoiesis. This unbiased approach will also contribute to the development of strategies that rely on complex information for multidimensional flow cytometry data analysis to improve its diagnostic applications.
590    __
$a bohemika - dle Pubmed
650    02
$a zvířata $7 D000818
650    02
$a CD antigeny $x analýza $7 D015703
650    12
$a nádorové biomarkery $x analýza $7 D014408
650    02
$a průtoková cytometrie $7 D005434
650    02
$a lidé $7 D006801
650    02
$a imunofenotypizace $7 D016130
650    12
$a membránové proteiny $x analýza $x metabolismus $7 D008565
650    02
$a myši $7 D051379
650    02
$a akutní lymfatická leukemie $x imunologie $x metabolismus $7 D054198
650    12
$a proteom $x analýza $x metabolismus $7 D020543
650    02
$a xenogenní modely - testy protinádorové aktivity $7 D023041
700    1_
$a Hofmann A
700    1_
$a Sedek L
700    1_
$a Slámová, Lucie $7 xx0138305
700    1_
$a Mejstříková, Ester, $d 1977- $7 xx0105223
700    1_
$a Szczepanski T
700    1_
$a Schmitz M
700    1_
$a Cario G
700    1_
$a Stanulla M
700    1_
$a Schrappe M
700    1_
$a van der Velden VH
700    1_
$a Bornhauser BC
700    1_
$a Wollscheid B
700    1_
$a Bourquin JP
773    0_
$t Blood $g Roč. 121, č. 25 (2013), s. e149-e159 $p Blood $x 0006-4971 $w MED00000807
773    0_
$p Blood $g 121(25):e149-59, 2013 Jun 20
910    __
$a ABA008 $b sig $y 4 $z 0
990    __
$a 20191010114638 $b ABA008
991    __
$a 20191010114638 $b ABA008
999    __
$a ok $b bmc $g 1453480 $s 1074970
BAS    __
$a 3
BMC    __
$a 2013 $b 121 $c 25 $d e149-e159 $x MED00000807 $i 0006-4971 $m Blood
GRA    __
$a NT13462 $p MZ0
LZP    __
$a NLK 2019/lp

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...