• Je něco špatně v tomto záznamu ?

The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations

V. Veselská, H. Šillerová, J. Göttlicher, Z. Michálková, JA. Siddique, S. Číhalová, V. Chrastný, R. Steininger, S. Mangold, M. Komárek,

. 2019 ; 127 (-) : 848-857. [pub] 20190507

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19044838

This study investigates redox transitions associated with the adsorption of Cr(VI) on commonly occurring soil components (silicates, oxides and humic acids) and their synthetic mixtures by coupling the mechanistic surface complexation modeling with spectroscopic and isotopic analyses. The mixtures of soil components were prepared to reflect the composition of the real anthroposol sample, determined by X-ray Powder Diffraction (XRD), total organic carbon (TOC) measurement and extraction methods. The effect of different initial Cr(VI) concentrations (2×10-2, 5×10-4, 10-4, 10-5, and 10-6M), background electrolyte (10-3, 10-2, and 10-1M KNO3), pH values (3-9), and sorbate/sorbent ratios (2g/L - 20g/L) were investigated. Maghemite and ferrihydrite were confirmed to be the main phases controlling Cr(VI) adsorption with increasing Cr(VI) concentration. Humic acids were primarily responsible for Cr(VI) reduction, especially at low pH values. The reduction of Cr(VI) was also proved in case of illite and kaolinite by XAS and isotopic analyses. Illite revealed higher reduction capacity in comparison with kaolinite based on XAS measurements. Chromium isotopic fractionation, resulting from Cr(VI) reduction, was the highest in the case of humic acids, followed by kaolinite and illite. However, a dissolution of intrinsic Cr originally present within kaolinite and illite might affect the final Cr isotopic composition of the supernatants due to its different Cr isotopic signature. In general, the combination of three different approaches was confirmed to offer more comprehensive information about Cr(VI) adsorption and/or reduction in soils. Detailed studies using soil mixtures can help to predict how the soil components affect Cr(VI) behavior in natural soils and possibly could improve the environmental remediation processes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044838
003      
CZ-PrNML
005      
20200811104428.0
007      
ta
008      
200109s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.envint.2019.03.066 $2 doi
035    __
$a (PubMed)31075676
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Veselská, Veronika $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic. Electronic address: veselskav@fzp.czu.cz.
245    14
$a The role of soil components in synthetic mixtures during the adsorption and speciation changes of Cr(VI): Conjunction of the modeling approach with spectroscopic and isotopic investigations / $c V. Veselská, H. Šillerová, J. Göttlicher, Z. Michálková, JA. Siddique, S. Číhalová, V. Chrastný, R. Steininger, S. Mangold, M. Komárek,
520    9_
$a This study investigates redox transitions associated with the adsorption of Cr(VI) on commonly occurring soil components (silicates, oxides and humic acids) and their synthetic mixtures by coupling the mechanistic surface complexation modeling with spectroscopic and isotopic analyses. The mixtures of soil components were prepared to reflect the composition of the real anthroposol sample, determined by X-ray Powder Diffraction (XRD), total organic carbon (TOC) measurement and extraction methods. The effect of different initial Cr(VI) concentrations (2×10-2, 5×10-4, 10-4, 10-5, and 10-6M), background electrolyte (10-3, 10-2, and 10-1M KNO3), pH values (3-9), and sorbate/sorbent ratios (2g/L - 20g/L) were investigated. Maghemite and ferrihydrite were confirmed to be the main phases controlling Cr(VI) adsorption with increasing Cr(VI) concentration. Humic acids were primarily responsible for Cr(VI) reduction, especially at low pH values. The reduction of Cr(VI) was also proved in case of illite and kaolinite by XAS and isotopic analyses. Illite revealed higher reduction capacity in comparison with kaolinite based on XAS measurements. Chromium isotopic fractionation, resulting from Cr(VI) reduction, was the highest in the case of humic acids, followed by kaolinite and illite. However, a dissolution of intrinsic Cr originally present within kaolinite and illite might affect the final Cr isotopic composition of the supernatants due to its different Cr isotopic signature. In general, the combination of three different approaches was confirmed to offer more comprehensive information about Cr(VI) adsorption and/or reduction in soils. Detailed studies using soil mixtures can help to predict how the soil components affect Cr(VI) behavior in natural soils and possibly could improve the environmental remediation processes.
650    _2
$a adsorpce $7 D000327
650    _2
$a chrom $x chemie $7 D002857
650    12
$a regenerace a remediace životního prostředí $7 D052918
650    _2
$a železité sloučeniny $x chemie $7 D005290
650    _2
$a půda $x chemie $7 D012987
650    _2
$a látky znečišťující půdu $x chemie $7 D012989
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Šillerová, Hana $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
700    1_
$a Göttlicher, Jörg $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany.
700    1_
$a Michálková, Zuzana $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
700    1_
$a Siddique, Jamal A $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
700    1_
$a Číhalová, Sylva $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic. $7 xx0148982
700    1_
$a Chrastný, Vladislav $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
700    1_
$a Steininger, Ralph $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany.
700    1_
$a Mangold, Stefan $u Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344 Eggenstein-Leopoldshafen, Germany.
700    1_
$a Komárek, Michael $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-16500 Prague, Czech Republic.
773    0_
$w MED00001541 $t Environment international $x 1873-6750 $g Roč. 127, č. - (2019), s. 848-857
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31075676 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200811104424 $b ABA008
999    __
$a ok $b bmc $g 1483107 $s 1083511
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 127 $c - $d 848-857 $e 20190507 $i 1873-6750 $m Environment international $n Environ Int $x MED00001541
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...