Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia

R. Vyškovský, D. Schwarz, T. Kašpárek,

. 2019 ; 31 (5) : 897-918. [pub] 20190318

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044937
003      
CZ-PrNML
005      
20200526102519.0
007      
ta
008      
200109s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1162/neco_a_01180 $2 doi
035    __
$a (PubMed)30883275
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Vyškovský, Roman $u Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, 625 00, Brno, Czech Republic vyskovsky@iba.muni.cz.
245    10
$a Brain Morphometry Methods for Feature Extraction in Random Subspace Ensemble Neural Network Classification of First-Episode Schizophrenia / $c R. Vyškovský, D. Schwarz, T. Kašpárek,
520    9_
$a Machine learning (ML) is a growing field that provides tools for automatic pattern recognition. The neuroimaging community currently tries to take advantage of ML in order to develop an auxiliary diagnostic tool for schizophrenia diagnostics. In this letter, we present a classification framework based on features extracted from magnetic resonance imaging (MRI) data using two automatic whole-brain morphometry methods: voxel-based (VBM) and deformation-based morphometry (DBM). The framework employs a random subspace ensemble-based artificial neural network classifier-in particular, a multilayer perceptron (MLP). The framework was tested on data from first-episode schizophrenia patients and healthy controls. The experiments differed in terms of feature extraction methods, using VBM, DBM, and a combination of both morphometry methods. Thus, features of different types were available for model adaptation. As we expected, the combination of features increased the MLP classification accuracy up to 73.12%-an improvement of 5% versus MLP-based only on VBM or DBM features. To further verify the findings, other comparisons using support vector machines in place of MLPs were made within the framework. However, it cannot be concluded that any classifier was better than another.
650    _2
$a mozek $x diagnostické zobrazování $7 D001921
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a lidé $7 D006801
650    12
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    12
$a neuronové sítě $7 D016571
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a schizofrenie $x diagnostické zobrazování $7 D012559
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Schwarz, Daniel $u Masaryk University, Faculty of Medicine, Institute of Biostatistics and Analyses, 625 00, Brno, Czech Republic schwarz@iba.muni.cz.
700    1_
$a Kašpárek, Tomáš $u Masaryk University and University Hospital Brno, Department of Psychiatry, 625 00, Brno, Czech Republic tkasparek@fnbrno.cz.
773    0_
$w MED00003480 $t Neural computation $x 1530-888X $g Roč. 31, č. 5 (2019), s. 897-918
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30883275 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200526102515 $b ABA008
999    __
$a ok $b bmc $g 1483206 $s 1083610
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 31 $c 5 $d 897-918 $e 20190318 $i 1530-888X $m Neural computation $n Neural Comput $x MED00003480
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...