Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Improving risk-stratification of patients with chronic lymphocytic leukemia using multivariate patient similarity networks

P. Turcsanyi, E. Kriegova, M. Kudelka, M. Radvansky, L. Kruzova, R. Urbanova, P. Schneiderova, H. Urbankova, T. Papajik,

. 2019 ; 79 (-) : 60-68. [pub] 20190219

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19044947

Grantová podpora
NV16-32339A MZ0 CEP - Centrální evidence projektů

BACKGROUND: Better risk-stratification of patients with chronic lymphocytic leukemia (CLL) and identification of subsets of ultra-high-risk (HR)-CLL patients are crucial in the contemporary era of an expanded therapeutic armamentarium for CLL. METHODS: A multivariate patient similarity network and clustering was applied to assess the prognostic values of routine genetic, laboratory, and clinical factors and to identify subsets of ultra-HR-CLL patients. The study cohort consisted of 116 HR-CLL patients (F/M 36/80, median age 63 yrs) carrying del(11q), del(17p)/TP53 mutations and/or complex karyotype (CK) at the time of diagnosis. RESULTS: Three major subsets based on the presence of key prognostic variables as genetic aberrations, bulky lymphadenopathy, splenomegaly, and gender: profile (P)-I (n = 34, men/women with CK + no del(17p)/TP53 mutations), P-II (n = 47, predominantly men with del(11q) + no CK + no del(17p)/TP53 mutations), and P-III (n = 35, men/women with del(17p)/TP53 mutations, with/without del(11q) and CK) were revealed. Subanalysis of major subsets identified three ultra-HR-CLL groups: men with TP53 disruption with/without CK, women with TP53 disruption with CK and men/women with CK + del(11q) with poor short-term outcomes (25% deaths/12 mo). Besides confirming the combinations of known risk-factors, the used patient similarity network added further refinement of subsets of HR-CLL patients who may profit from different targeted drugs. CONCLUSIONS: This study showed for the first time in hemato-oncology the usefulness of the multivariate patient similarity networks for stratification of HR-CLL patients. This approach shows the potential for clinical implementation of precision medicine, which is especially important in view of an armamentarium of novel targeted drugs.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19044947
003      
CZ-PrNML
005      
20200526102448.0
007      
ta
008      
200109s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.leukres.2019.02.005 $2 doi
035    __
$a (PubMed)30852300
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Turcsanyi, Peter $u Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic. Electronic address: Peter.Turcsanyi@fnol.cz.
245    10
$a Improving risk-stratification of patients with chronic lymphocytic leukemia using multivariate patient similarity networks / $c P. Turcsanyi, E. Kriegova, M. Kudelka, M. Radvansky, L. Kruzova, R. Urbanova, P. Schneiderova, H. Urbankova, T. Papajik,
520    9_
$a BACKGROUND: Better risk-stratification of patients with chronic lymphocytic leukemia (CLL) and identification of subsets of ultra-high-risk (HR)-CLL patients are crucial in the contemporary era of an expanded therapeutic armamentarium for CLL. METHODS: A multivariate patient similarity network and clustering was applied to assess the prognostic values of routine genetic, laboratory, and clinical factors and to identify subsets of ultra-HR-CLL patients. The study cohort consisted of 116 HR-CLL patients (F/M 36/80, median age 63 yrs) carrying del(11q), del(17p)/TP53 mutations and/or complex karyotype (CK) at the time of diagnosis. RESULTS: Three major subsets based on the presence of key prognostic variables as genetic aberrations, bulky lymphadenopathy, splenomegaly, and gender: profile (P)-I (n = 34, men/women with CK + no del(17p)/TP53 mutations), P-II (n = 47, predominantly men with del(11q) + no CK + no del(17p)/TP53 mutations), and P-III (n = 35, men/women with del(17p)/TP53 mutations, with/without del(11q) and CK) were revealed. Subanalysis of major subsets identified three ultra-HR-CLL groups: men with TP53 disruption with/without CK, women with TP53 disruption with CK and men/women with CK + del(11q) with poor short-term outcomes (25% deaths/12 mo). Besides confirming the combinations of known risk-factors, the used patient similarity network added further refinement of subsets of HR-CLL patients who may profit from different targeted drugs. CONCLUSIONS: This study showed for the first time in hemato-oncology the usefulness of the multivariate patient similarity networks for stratification of HR-CLL patients. This approach shows the potential for clinical implementation of precision medicine, which is especially important in view of an armamentarium of novel targeted drugs.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a shluková analýza $7 D016000
650    _2
$a kohortové studie $7 D015331
650    _2
$a mutační analýza DNA $7 D004252
650    _2
$a rozhodovací stromy $7 D003663
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a chronická lymfatická leukemie $x diagnóza $x epidemiologie $x genetika $x terapie $7 D015451
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a multivariační analýza $7 D015999
650    _2
$a neuronové sítě $7 D016571
650    _2
$a individualizovaná medicína $x metody $7 D057285
650    _2
$a prediktivní hodnota testů $7 D011237
650    _2
$a prognóza $7 D011379
650    _2
$a hodnocení rizik $7 D018570
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kriegova, Eva $u Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic, Olomouc, Czech Republic. Electronic address: eva.kriegova@email.cz.
700    1_
$a Kudelka, Milos $u Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic. Electronic address: Milos.Kudelka@vsb.cz.
700    1_
$a Radvansky, Martin $u Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, Ostrava, Czech Republic. Electronic address: Martin.Radvansky@vsb.cz.
700    1_
$a Kruzova, Lenka $u Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic. Electronic address: Lenka.Kruzova@fnol.cz.
700    1_
$a Urbanova, Renata $u Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic. Electronic address: Renata.Urbanova@fnol.cz.
700    1_
$a Schneiderova, Petra $u Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic, Olomouc, Czech Republic. Electronic address: Petra.Schneiderova@fnol.cz.
700    1_
$a Urbankova, Helena $u Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic. Electronic address: Helena.Urbankova@fnol.cz.
700    1_
$a Papajik, Tomas $u Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Olomouc, Czech Republic. Electronic address: Tomas.Papajik@fnol.cz.
773    0_
$w MED00003141 $t Leukemia research $x 1873-5835 $g Roč. 79, č. - (2019), s. 60-68
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30852300 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200526102445 $b ABA008
999    __
$a ok $b bmc $g 1483216 $s 1083620
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 79 $c - $d 60-68 $e 20190219 $i 1873-5835 $m Leukemia research $n Leuk Res $x MED00003141
GRA    __
$a NV16-32339A $p MZ0
LZP    __
$a Pubmed-20200109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...